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ABSTRACT

Depth imagery is transforming many areas of computer vision, such as object recognition,
human detection, human activity recognition, and sports analysis. The goal of my work
is twofold: (1) use depth imagery to effectively analyze the pommel horse event in men’s
gymnastics, and (2) explore and build upon the use of depth imagery to recognize human
activities through skeleton representation. I show that my gymnastics analysis system can
accurately segment a scene based on depth to identify a ‘depth of interest’, ably recognize ac-
tivities on the pommel horse using only the gymnast’s silhouette, and provide an informative
analysis of the gymnast’s performance. This system runs in real-time on an inexpensive lap-
top, and has been built into an application in use by elite gymnastics coaches. Furthermore,
I present my work expanding on a bio-inspired skeleton representation obtained through
depth data. This representation outperforms existing methods in classification accuracy on
benchmark datasets. I then show that it can be used to interact in real-time with a Baxter
humanoid robot, and is more accurate at recognizing both complete and ongoing interactions

than current state-of-the-art methods.

1l



TABLE OF CONTENTS

ABSTRACT . . o iii
LIST OF FIGURES . . . . . . . e vii
LIST OF TABLES . . . . . . e viii
ACKNOWLEDGMENTS . . . . . . e, ix
CHAPTER 1 INTRODUCTION . . . . . . o 1
CHAPTER 2 RELATED WORK . . . . .. . .. . 4
2.1 Human Detection and Regions of Interest . . . . . . . . ... ... ... .. ... 4
2.2 RGB-D Sensors and Skeleton Acquisition . . . . . . . ... ... 5
2.3 Skeleton Representation Modalities . . . . . . . . . ... ... ... ... ... 9
2.3.1 Representations Based on Displacement . . . . . . ... ... ... ... 9

2.3.1.1  Spatial Displacement Between Joints . . . . . . . ... ... .. 9

2.3.1.2 Temporal Joint Displacement . . . . . ... . ... ... ... 10

2.3.2 Representations Based on Orientation. . . . . .. .. ... ... .... 11

2.3.2.1 Spatial Orientation of Pairwise Joints . . . . . . . .. .. ... 11

2.3.2.2 Temporal Joint Orientation . . . . . . ... ... ... .... 12

2.3.3 Representations Based on Raw Joint Positions . . . . . . . ... .. .. 13

2.3.4 Representations Based on Multiple Modalities . . . . . . ... ... .. 14

2,35 Summary ... ... 15

2.4 Skeleton Representation Encodings . . . . . . . . . .. ... ... 15
2.4.1 Concatenation-Based Encoding . . . . . . ... ... ... ... ... . 16

v



2.4.2 Statistics-Based Encoding . . . . .. ..o o000 16

2.4.3 Bag-of-Words Encoding . . . . . .. .. ... o 17
244 SUMMATY . . . .. 18
2.5 Activity Classification and Prediction . . . . . . . . ... ... ... ... ... 19
2.6 Sports Analysis and Gymnastics . . . . . . . ... 21

CHAPTER 3 AUTOMATED EVALUATION OF GYMNAST PERFORMANCE . . . 23

3.1 Motivation . . . . . . Lo 23
3.2 Gymnastics Dataset . . . . . . .. .. 25
3.2.1 Recording the Dataset . . . . . . .. ... ... ... ... ... ... 25
3.2.2 Details and Annotation . . . . . . .. ..o 25

3.3 Approach . . . ... 27
3.3.1 Depth of Interest Segmentation and Gymnast Identification . . . . . . 28
3.3.2  Activity Classification . . . . . . . .. ... L 29
3.3.3 Performance Analysis . . . . . . .. ... Lo 31

3.4 Experimental Results . . . . . . . . ... oo 34
3.4.1 Depth of Interest Segmentation . . . .. ... ... ... ... ..... 35
3.4.2  Activity Recognition . . . . . ... ... 36
3.4.3 Performance Analysis . . . . . . . .. ... 37

3.5 Case Study in a Real-world Application . . . . . . ... ... ... ... .... 38
CHAPTER 4 BIPOD SKELETAL REPRESENTATION . . . . .. ... ... ..... 42
4.1 Motivation . . . . . .. oL 42
4.2 Approach . . . .. 43
4.3 Experimental Results . . . . . . . . ... oo 46



4.4 Discussion . . . . . .

CHAPTER 5 CONCLUSION

REFERENCES CITED . ..

vi



Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 4.1
Figure 4.2

Figure 4.3

LIST OF FIGURES

Skeleton diagrams from OpenNI, Kinect, and MoCap . . . . . . ... ... 8
Examples of 3D human representations based on joint displacements . . . 11
3D human representation based on the Cov3DJ descriptor . . . . . . . . . 14
Dictionary learning based on sparse coding . . . . . . .. .. .. ... .. 18
Pommel horse with Kinect camera . . . . . . . . .. ... ... .. ... .. 24
A variety of dataset image examples . . . . . . .. ... ... 26
Visualization of the gymnastics analysis pipeline . . . . . . ... ... .. 27
Estimated probability distribution for the depth values in a frame . . . . 29
Example depth of interest segmentations . . . . .. ... .. ... ... .. 30
Kinect skeleton construction error . . . . . . . ..o 31
Mlustration of the Silhouette Activity Descriptor in 3 Dimensions

(SAD3D) . . . . 32
[lustration of the vectors involved in feet tracking . . . . . . .. ... .. 33
Cubic spline fit to observed foot positions . . . . . . . . ... .. ... .. 34
Gymnast spin times graphed over a routine . . . . . . .. .. ... L. 38
Screenshots from the gymnastics analysis application . . . . . .. .. .. 40
Motivation for the problem of activity prediction . . . . . . . .. . .. .. 43
Explanation of anatomical planes . . . . . . . ... ... ... .. .... 44
Experimental results on Baxter . . . . . . . ... ... 48

vil



Table 2.1

Table 3.1

Table 4.1

LIST OF TABLES

Summary of skeleton construction techniques . . . . . . . ... ... ... .. 7
SAD3D activity recognition accuracy on the MSR Daily Activity 3D

dataset . . . . .. 37
BIPOD activity recognition accuracy on Baxter . . . . . . . . .. ... ... 48

viil



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors, William Hoff and Hao Zhang, for
all of their guidance, instruction, and patience through weekly meetings over the course of
this masters degree, as well as giving me the freedom to explore this field. I also owe them
and a local gymnastics facility a debt of gratitute for the opportunity to work on this very
unique project. I’d like to thank the members of my thesis committee. I'd like to thank Evan
Balogh, Travis Johnson, Austin Kauffman, and Zac McClain for their work in building my
methods into a user-friendly application. I’d like to thank Fei Han for his work on skeleton

representations. Lastly, I'd like to thank my parents and Erin for all of the encouragement.

1X



CHAPTER 1
INTRODUCTION

The availability of depth imagery is having a transformative effect on many areas of
computer vision. The introduction of color-depth, or RGB-D, cameras such as Kinect [1]
have made depth imagery cheap and easy to obtain, providing researchers with information
about the 3D nature of a scene. In addition, the development of fast and accurate methods
to identify joint locations using depth data [2] has popularized the use of skeleton-based
representations for humans and actions. These two advancements have impacted a number
of fields; in this thesis I will focus on their impact and use in the area of gymnastics analysis
and human activity recognition.

Sports analysis methods have been developed that use a variety of data sources; com-
puter vision in particular has been used extensively but is limited by trying to analyze 3D
activities through 2D data (RGB imagery). Depth imagery introduces opportunities that
traditional intensity imagery does not offer; methods can be more accurate, more efficient, or
analyze new areas of a sport. Sports analysis is also limited by the need for expert input on
what aspects of a sport are important to analyze; this limitation is magnified in sports such
as gymnastics, where evaluation is based on human judges, and is thus subjective instead
of objectively based on statistics. My work to analyze the pommel horse event in men’s
gymnastics was developed with the assistance of professional gymnastics coaches. The pom-
mel horse event, seen in Figure 3.1, consists of a gymnast performing various moves while
supporting themselves with only their hands on the apparatus. The most common and im-
portant move is spinning or performing circles, and key to being judged well is performing
these circles with very consistent timing.

Depth imagery has also revolutionized the field of human activity recognition; current

research is based almost exclusively on representations of human skeletons obtained through



devices like the Kinect. Activity recognition is important in many fields, such as security,
assisted living, sports analysis, and human-robot interaction. Efficient and accurate activity
classification is important and many methods have been proposed. The problem of activity
prediction - classifying an action based on incomplete or ongoing data - is both more critical
and less reearched. Predicting activities accurately can enable security systems to identify
crimes as they are committed, or simply allow a robot to discern a human’s intention before
they finish giving a command.

This thesis makes four important contributions. First, I provide a comprehensive review
of the current state-of-the-art work in human skeleton data acquisition and representation.
This review, a condensed version of [3], focuses on the most recent and advanced methods,
and provides an effective categorization based on the approaches. Second, I introduce a
dataset of gymnasts performing routines on the pommel horse apparatus, recorded as depth
data with a portable Kinect 2 camera, with the hope that other researchers may find it
useful for developing further sports analysis techniques. Third, I introduce a novel system
that integrates multiple highly efficient methods to analyze gymnastics performance in real-
time, which assists professional gymnastics coaches. Finally, I present my contributions to
BIPOD, a skeleton-based 3D representation of humans based on human anatomy research,
that effectively encodes spatio-temporal information of human actions. BIPOD is able to
reduce noise in observed data, predict activities in real-time, and recognize incomplete ac-
tivities more accurately than existing methods. I demonstrate that BIPOD is an effective
solution for human-robot interactions.

Work in this thesis has been presented in three publications that I am the lead or co-lead

author on:

e ‘Space-Time Representation of People Based on 3D Skeletal Data: A Review’ by Han,
Reily, Hoff, and Zhang [3], currently submitted for publication to ACM Computing

Surveys.



e ‘Skeleton-Based Bio-Inspired Human Activity Prediction for Real-time Human-Robot
Interaction’ by Reily, Han, Parker, and Zhang [4], currently submitted for publication

to IEEE Transactions on Cybernetics.

e ‘Real-time Gymnast Detection and Performance Analysis with a Portable 3D Camera’
by Reily, Zhang, and Hoff [5], currently submitted for publication to Computer Vision

and Image Understanding, special issue on Computer Vision in Sports.

The rest of the paper is structured as follows: In Chapter 2, I discuss the current state of
research in the areas of human detection, RGB-D sensors and skeleton acquisition methods,
skeleton representation approaches, activity recognition and classification, and finally sports
analysis, specifically gymnastics. In Chapter 3, I introduce my system to automatically
analyze the performance of gymnasts using depth imagery. Specifically, I discuss the dataset
I created, describe my approach to the problem, discuss my experimental results, and finally
introduce the real-world application created to validate my methods. In Chapter 4, I discuss
my work towards the BIPOD skeleton representation. Specifically, I introduce the motivation

and approach, and present experimental results. Finally in Chapter 5, I conclude the paper.



CHAPTER 2
RELATED WORK

Human activity recognition is a broad field, involving many areas of computer vision.
Since this thesis covered topics along the entire path from the depth image source to the
resulting output, it was important to review current work in a multitude of areas. I cover de-
tecting humans in a scene, acquiring skeleton data from RGB-D cameras, representing those

skeletons effectively, recognizing human activities, and analyzing sports and gymnastics.
2.1 Human Detection and Regions of Interest

A variety of methods have been developed to automatically detect humans and regions
of interest in a scene. In 2D images, gradient based features like SIFT [6] resulted in the
use of histograms of oriented gradients (HOG) to detect pedestrians developed by Dalal et
al. [7, 8]. Bourdev et al. [9, 10] developed this further into a concept termed ‘poselets’
to detect humans and body parts. The pictorial structures model often used in modeling
objects or poses has also been applied to people detection by a number of researchers [11-13].
A key drawback of many of these methods is their use on upright humans in RGB images,
whereas our problem area is humans in non-standard poses captured with a depth camera.
While human detection has been done using depth data [14-17], these have all been aimed
at detecting people from mobile robots and are targeted at that task.

Human detection methods have been aided by work in automating the identification of
likely regions to search for people. [18] proposes a method to learn likely segmentations
of 3D data using Markov Random Fields. Automated segmentation has also been used
extensively in neural network based approaches, most notably the Multiscale Combinatorial
Grouping (MCG) technique described in [19] (with background in [20-22]). MCG applies a
fast normalized cuts algorithm to an image at different scales, and then effectively merges

the cuts to describe likely segmentation candidates. An advantage of this approach is that it



provides an exact boundary for an object, unlike the commonly used bounding boxes or the
3D regions described here [23]. Most approaches similar to this are unable to run in real-
time however, making them difficult to use in applications where performance is important or
computing resources are limited. Zhang et al. proposes a novel ‘depth of interest’ approach
[24], extending regions of interest to 3D space. This approach relies on building a probability
distribution of depth values in an image and identifying peaks, corresponding to objects or
people in the foreground. A key advantage is that this method is efficient and reduces the

amount of data necessary to process afterwards.
2.2 RGB-D Sensors and Skeleton Acquisition

Recently, structured-light sensors or color-depth cameras have attracted significant at-
tention, especially from robotics researchers. These sensors have become a standard device
to construct 3D perception systems on intelligent mobile robots. Structured-light RGB-D
sensors are a type of camera that uses infrared light to capture depth information about a
scene, such as the Microsoft Kinect [1], ASUS Xtion PRO LIVE [25], and PrimeSense [26],
among others. A structured-light sensor consists of an infrared-light source and a receiver
that can detect infrared light. The light projector emits a known pattern, and the way that
this pattern distorts on the scene allows the camera to decide the depth. A color camera is
also available on the sensor to acquire color frames that can be registered to depth frames,
thereby providing color-depth information at each pixel of a frame or 3D color point clouds.
Structured-light sensors are inexpensive and can provide 3D skeleton information in real-
time. However, since structured-light cameras are based on infrared light, they can only
work in an indoor environment. The frame rate (30 Hz) and resolution of depth images
(320x240) are also relatively low.

Several drivers are available to provide the access to the color-depth data acquired by the
sensor, including the Microsoft Kinect SDK [1], the OpenNT library [27], and the OpenKinect
library [28]. The Kinect SDK also provides 3D human skeletal data using the method

described by Shotton et al. [2], localizing 20 joints (seen in Figure 2.1(b)). OpenNI uses NITE



[29] — a skeleton generation framework developed as proprietary software by PrimeSense, to
generate a similar 3D human skeleton model. This method, available through the Robot
Operating System (ROS), provides the locations of 15 joints (seen in Figure 2.1(a)). An
alternative approach to obtain 3D human skeleton data is using a motion capture (MoCap)
system, which typically uses multiple cameras to track reflective markers attached to the
human body. For example, 3D skeleton data in the HDMO05 Mocap dataset [30] contains 24
joints, as depicted in Figure 2.1(c). Although a MoCap system provides very accurate and
clean skeleton data, the infrastructure required makes it a better fit for applications such as
immersive virtual reality software or building accurate digital character models - it cannot
be used on mobile robotic platforms or in real-world sports analysis situations where the
markers would inhibit athletic performance.

The skeleton is a natural representation of the human body structure, which assumes
that the human body is an articulated system of rigid segments that are connected by joints.
Acquisition of 3D human skeleton sequences has been a desirable goal for a long time. In
addition to NITE and the Kinect SDK, many other skeleton acquisition approaches have
been developed that are based on depth imagery. While some are based on manual joint
annotation [31-33], the majority of the current methods are based on body part recognition,
and then fit a flexible model to the now ‘known’ body part locations. An alternate main
methodology is starting with a ‘known’ prior, and fitting the silhouette or point cloud to
this prior after the humans are localized [14, 15, 34]. A summary of the reviewed skeleton
construction techniques is presented in Table 2.1.

Human joint estimation via body part recognition is one popular approach to construct
the skeleton model [32, 35, 36, 38-40, 46, 48]. A seminal paper by Shotton et al. [35] in
2011 provided an extremely effective skeleton construction algorithm based on body part
recognition, that was able to work in real-time — now available in the Kinect SDK. A single
depth image (independent of previous frames) is classified on a per-pixel basis, using a

randomized decision forest classifier. Each branch in the forest is determined by a simple



Table 2.1: Summary of skeleton construction techniques based on depth images.

’ Reference \ Approach \ Performance Notes
[35],[36] Pixel-by-pixel classification 16 joints, real-time, 200 fps
37] Motion exemplars 38mm accuracy
38] Random tree walks real-time, 1000fps
[39] Conditional regression forests over 80% average precision
[40] Limb-based shape models robust to occlusions
32] Decision tree poselets, pictorial structures little training data needed
[41] ICP using optimized Jacobian over 10 fps
[42] Matching previous joint positions 20 joints, real-time, 100 fps
[43] Regression to predict correspondences 19 joints, real-time, 120fps
[44] ICP on individual parts 10fps, robust to occlusion
[45] ICP with physical constraints real-time, 125fps
[46],[47] Haar features and Bayesian prior real-time

relation between the target pixel and various others. The pixels that are classified into the
same category form the body part, and the joint is inferred by the mean-shift method from a
certain body part, using the depth data to ‘push’ them into the silhouette. While training the
decision forests takes a large number of images (around 1 million) as well as a considerable
amount of computing power, the fact that the branches in the forest are very simple allows
this algorithm to generate 3D human skeleton models within about 5ms per frame. An
extended work was published in [36], with both accuracy and speed improved. Plagemann
et al. [46] introduced an approach to recognize body parts using Haar features [49] and
construct a skeleton model on these parts. Using data over time, they construct a Bayesian
network, which produces the estimated pose using body part locations and starts with the
previous pose as a prior [47]. Holt et al. [32] proposed Connected Poselets to estimate
3D human pose from depth data. The approach utilizes the idea of poselets [9], which are
widely applied for pose estimation from RGB images. For each depth image, a multi-scale
sliding window is applied, and a decision forest is used to detect poselets and estimate joint
locations. Using a skeleton prior inspired by pictorial structures [11, 50], the method begins

with a torso point and connects outwards to body parts. By applying kinematic inference
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Right elbow Left elbow
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(a) OpenNI (b) Kinect SDK

Figure 2.1: Skeleton diagrams from OpenNI, Kinect, and MoCap. Skeleton data acquired
from OpenNI contains 15 joints as depicted in Figure 2.1(a), 20 joints from Microsoft Kinect
SDK as shown in Figure 2.1(b), and a varied number of joints from a MoCap system such
as 31 joints in Figure 2.1(c).

to eliminate impossible poses, they are able to reject incorrect body part classifications and
improve their accuracy.

Another widely investigated methodology to construct 3D human skeleton models from
depth imagery is based on nearest-neighbor matching [37, 41-44, 51]. Several approaches
for whole-skeleton matching are based on the Iterative Closest Point (ICP) method [52],
which can iteratively decide a rigid transformation such that the input query points fit to
the points in the given model under this transformation. Using point clouds of a person with
known poses as a model, several approaches [41, 44] apply ICP to fit the unknown poses by
estimating the translation and rotation to fit the unknown body parts to the known model.
While these approaches are relatively accurate, they suffer from several drawbacks. ICP is
computationally expensive for a model with as many degrees of freedom as a human body.
Additionally, it can be difficult to recover from tracking loss. Typically the previous pose is
used as the known pose to fit to; if tracking loss occurs and this pose becomes inaccurate,
then further fitting can be difficult or impossible. Finally, skeleton construction methods

based on the ICP algorithm generally require an initial T-pose to start the iterative process.



2.3 Skeleton Representation Modalities

Skeleton-based human representations are constructed from various features computed
from raw 3D skeletal data, where each feature source is called a modality, a standard term
used in multi-view learning [53]. From the perspective of information modality, 3D skeleton-
based human representations can be classified into four categories, in terms of whether they

are based on joint displacement, orientation, raw position, or multiple modalities.
2.3.1 Representations Based on Displacement

Features extracted from displacements of skeletal joints are widely applied in many
skeleton-based representations due to their simple structure and easy implementation. They
can be based either on the displacement between different human joints within the same

frame or the displacement of the same joint across different time periods.
2.3.1.1 Spatial Displacement Between Joints

Representations based on relative joint displacements compute spatial displacements of
coordinates of human skeletal joints in 3D space, which are acquired from the same frame
at a time point.

The pairwise relative position of human skeleton joints is the most widely studied dis-
placement feature for human representation [54-59]. Within a skeleton model obtained at a
single time point, for each joint p = (z,y, 2) in 3D space, the difference between the location
of joint ¢ and joint j is calculated by p;; = p; — p;,7 # j. The joint locations p are often
normalized, so that the feature is invariant to the absolute body position, initial body orienta-
tion and body size [54-56]. Chen and Koskela [57] implemented a method based on pairwise
relative position of skeleton joints with normalization calculated by %, i # j, which
is illustrated in Figure 2.2(a).

Another group of joint displacement features extracted from the same frame are based

on the difference to a reference joint. In these features, the displacements are obtained

by calculating the coordinate difference of all joints with respect to a single joint, usually



manually selected. Given the location of a joint (z,y, z) and a given reference joint (z., ye, 2.)
in the world coordinate system, Rahmani et al. [60] defined the spatial joint displacement as
(Az, Ay, Az) = (x,y, 2) — (T¢, Ye, 2c), Where the reference joint can be the skeleton centroid
or a manually selected, fixed joint (seen in Figure 2.2(b)). For each sequence of human
skeletons representing an activity, the computed displacements along each dimension (e.g.,
Ax, Ay or Az) are used as features to represent humans. Luo et al. [61] performed similar
calculations but selected the hip center as the reference joint since it has relatively small

motions for most actions.
2.3.1.2 Temporal Joint Displacement

3D human representations based on temporal joint displacements compute the location
difference across a sequence of frames acquired at different time points. Usually, they employ
both spatial and temporal information to represent people in space and time.

A widely used temporal displacement feature is implemented by comparing the joint
coordinates at different time steps. Yang and Tian [56, 62] introduced a novel feature based
on the position difference of joints, called EigenJoints, which combines static posture, motion,
and joint offsets. In particular, the joint displacement of the current frame with respect to
the previous frame and initial frame is calculated. Ellis et al. [63] introduced an algorithm to
reduce latency for action recognition using a 3D skeleton-based representation that depends
on spatio-temporal features computed from the information in three frames: the current
frame, the frame collected 10 time steps ago, and the frame collected 30 steps ago. Then,
the features are computed as the temporal displacement among those three frames. Another
approach to construct temporal displacement representations incorporates the object being
interacted with in each pose [64]. This approach constructs a hierarchical graph to represent
positions in 3D space and motion through 1D time. The differences of joint coordinates in
two successive frames are defined as the features.

The joint movement volume is another feature construction approach for human rep-

resentation that also uses joint displacement information for feature extraction, especially

10



when a joint exhibits a large movement [60]. For a given joint, extreme positions during the
full joint motion are computed along z, y, and z axes. The maximum moving range of each
joint along each dimension is then computed by L, = max(a;) — min(a;), where a = z,y, 2;
and the joint volume is defined as V; = L, L, L., as demonstrated in Figure 2.2(c). For each
joint, Ly, L,, L, and V; are flattened into a feature vector. The approach also incorporates
relative joint displacements with respect to the torso joint into the feature.

Shoulder Head Motion Volume

Motion Volume
Elbow Motion Volume

Hand Motion

Knee
Volume

Motion

Volume
Ankle Motion Volume

Toe Motion Volume

(a) Pairwise Displacement (b) Relative Displacement (¢) Joint Motion Volume

Figure 2.2: Examples of 3D human representations based on joint displacements. Fig-
ure 2.2(a) illustrates the displacement of pairwise joints [57], Figure 2.2(b) shows relative
joint displacement and Figure 2.2(c) illustrates joint motion volume features [60].

2.3.2 Representations Based on Orientation

Another widely used information modality for human representation construction is joint
orientations, since in general orientation-based features are invariant to human position, body

size, and orientation to the camera.

2.3.2.1 Spatial Orientation of Pairwise Joints

Approaches based on spatial orientations of pairwise joints compute the orientation of
displacement vectors for pairs of human skeletal joints acquired at the same time step.

A number of popular orientation-based representations compute the orientation of each
joint to the human centroid in 3D space. For example, Gu et al. [65] collected skeleton
data with fifteen joints and extracted features representing joint angles with respect to the

person’s torso. Sung et al. [66] computed the orientation matrix of each human joint with

11



respect to the camera, and then transformed the joint rotation matrix to obtain the joint
orientation with respect to the person’s torso. A similar approach was also introduced in
[67] based on the orientation matrix. Xia et al. [68] introduced Histograms of 3D Joint
Locations (HOJ3D) features by assigning 3D joint positions into cone bins in 3D space.
Twelve key joints are selected and their orientation are computed with respect to the center
torso point. Using linear discriminant analysis (LDA), the features are reprojected to extract
the dominant ones. Since the spherical coordinate system used in [68] is oriented with the x
axis aligned with the direction a person is facing, their approach is view invariant.

Another approach is to calculate the orientation of two joints, called relative joint orien-
tations. Jin and Choi [69] utilized vector orientations from one joint to another joint, named
the first order orientation vector, to construct 3D human representations. The approach
also proposed a second order neighborhood that connects adjacent vectors. The authors
used a uniform quantization method to convert the continuous orientations into eight dis-
crete symbols to guarantee robustness to noise. Zhang and Tian [70] used a two mode 3D
skeleton representation, combining structural data with motion data. The structural data
is represented by pairwise features, relating the positions of each pair of joints relative to

each other. The orientation between two joints ¢ and 7 was also used, which is given by

(i, j) = arcsin ( d’;&ib) /27, where dist(i,j) denotes the geometric distance between two

joints ¢ and 7 in 3D space.
2.3.2.2 Temporal Joint Orientation

Human representations based on temporal joint orientations usually compute the differ-
ence between orientations of the same joint across a temporal sequence of frames. Boubou
and Suzuki [71] describe a representation called Histogram of Oriented Velocity Vectors
(HOVYV), which is a histogram of the velocity orientations computed from 19 human joints
in a skeleton kinematic model acquired from a Kinect camera. Each temporal displacement
vector is described by its orientation in 3D space as the joint moves from the previous posi-

tion to the current location. By using a static skeleton prior to deal with static poses with

12



little or no movement, this method is able to effectively represent humans with still poses in

3D space in human action recognition applications.
2.3.3 Representations Based on Raw Joint Positions

Besides joint displacements and orientations, raw joint positions directly obtained from
sensors are also used by many methods to construct space-time 3D human representations.
A category of approaches flatten joint positions acquired in the same frame into a column
vector. Given a sequence of skeleton frames, a matrix can be formed to naively encode the
sequence with each column containing the flattened joint coordinates obtained at a specific
time point. Following this direction, Hussein et al. [72] computed the statistical Covariance of

3D Joints (Cov3DJ) as their features, as illustrated in Figure 2.3. Specifically, given K human

joints with each joint denoted by p, = (x;, i, 2:),7 = 1,..., K, a feature vector is formed
to encode the skeleton acquired at time t: S® = [xgt), . ,x(f?, y@, . ,yg), z?), . ,z&?]T.

Given a temporal sequence of T" skeleton frames, the Cov3DJ feature is computed by C(.S)=
— ZtT:l(S(t)—S(t))(S(t)—S'(t))T, where S is the mean of all S.

Some representations on basic features consisting of just joint positions, but focused on
intelligently selecting which joints to use. Since not all the joints are equally informative, sev-
eral methods were proposed to select key joints that are more descriptive [73-76]. Chaaraoui
et al. [73] introduced an evolutionary algorithm to select a subset of skeleton joints to form
features. Then a normalizing process was used to achieve position, scale and rotation invari-
ance. Similarly, Reyes et al. [74] selected 14 joints in 3D human skeleton models without
normalization for feature extraction in gesture recognition applications.

Similar to the application of deep learning techniques to extract features from images
where raw pixels are typically used as input, skeleton-based human representations built
by deep learning methods generally rely on raw joint position information. For example,
Du et al. [77] proposed an end-to-end hierarchical recurrent neural network (RNN) for the
skeleton-based representation construction, in which the raw positions of human joints are

directly used as the input to the RNN. Zhu et al. [78] used raw 3D joint coordinates as
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Figure 2.3: 3D human representation based on the Cov3DJ descriptor [72].
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the input to a RNN with Long Short-Term Memory (LSTM) to automatically learn human

representations.
2.3.4 Representations Based on Multiple Modalities

Since multiple information modalities are available, an intuitive way to improve the de-
scriptive power of a human representation is to integrate multiple information sources and
build a multi-modal representation to encode humans in 3D space. For example, the spatial
joint displacement and orientation can be integrated together to build human representa-
tions. Guerra-Filho and Aloimonos [79] proposed a method that maps 3D skeletal joints
to 2D points in the projection plane of the camera and computes joint displacements and
orientations of the 2D joints in the projected plane. Gowayyed et al. [80] developed the
histogram of oriented displacements (HOD) representation that computes the orientation
of temporal joint displacement vectors and uses their magnitude as the weight to update
the histogram in order to make the representation speed-invariant. Yu et al. [81] integrated

three types of features to construct a spatio-temporal representation, including pairwise joint
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distances, spatial joint coordinates, and temporal variations of joint locations. Masood et
al. [82] implemented a similar representation by incorporating both pairwise joint distances
and temporal joint location variations. Zanfir et al. [83] introduced a feature that integrates
raw 3D joint positions as well as first and second derivatives of the joint trajectories, based
on the assumption that the speed and acceleration of human joint motions can be described

accurately by quadratic functions.
2.3.5 Summary

Through computing the difference of skeletal joint positions in 3D real-world space,
displacement-based representations are invariant to absolute locations and orientations of
people with respect to the camera, which can provide the benefit of forming view-invariant
spatio-temporal human representations. Similarly, orientation-based human representations
can provide the same view-invariance because they are also based on the relative information
between human joints. In addition, since orientation-based representations do not rely on
the displacement magnitude, they are usually invariant to human scale variations. Repre-
sentations based directly on raw joint positions are widely used due to the simple acquisition
from sensors. Although normalization procedures can make human representations partially
invariant to view and scale variations, more sophisticated construction techniques (e.g., deep
learning) are typically needed to develop robust human representations.

Representations that do not involve temporal information are suitable to address prob-
lems such as pose estimation and gesture recognition. However, if we want the representa-
tions to be capable of encoding dynamic human motions, integrating temporal information
is helpful. Applications such as activity recognition can benefit from spatio-temporal repre-

sentations that incorporate time and space information simultaneously.
2.4 Skeleton Representation Encodings

Feature encoding is a necessary and important component in representation construction

[84], which aims at integrating all extracted features together into a final feature vector that
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can be used as the input to classifiers or other reasoning systems. In the scenario of 3D
skeleton-based representation construction, the encoding methods can be broadly grouped
into three classes: concatenation-based encoding, statistics-based encoding, and bag-of-words

encoding.
2.4.1 Concatenation-Based Encoding

Many methods directly use extracted skeleton-based features, such as displacements and
orientations of 3D human joints, and concatenate them into a 1D feature vector to build
a human representation [55-57, 62, 64, 66, 74, 75, 81, 85-91]. For example, Fothergill et
al. [90] encoded a feature vector by concatenating 35 skeletal joint angles, 35 joint angle
velocities, and 60 joint velocities into a 130-dimensional vector at each frame. Then, feature
vectors from a sequence of frames are further concatenated into a large final feature vector
that is fed into a classifier for reasoning. Similarly, Gong et al. [88] directly concatenated
3D joint positions into a 1D vector as a representation at each frame to address the time

series segmentation problem.
2.4.2 Statistics-Based Encoding

Statistics-based encoding is a common and effective method to incorporate all features
into a final feature vector, without applying any feature quantization procedure. This en-
coding methodology processes and organizes features through simple statistics. For example,
the Cov3DJ representation [72], as illustrated in Figure 2.3, computes the covariance of a set
of 3D joint position vectors collected across a sequence of skeleton frames. Since a covari-
ance matrix is symmetric, only upper triangle values are utilized to form the final feature.
An advantage of this statistics-based encoding approach is that the size of the final feature
vector is independent of the number of frames.

The most widely used statistics-based encoding methodology is histogram encoding,
which uses a 1D histogram to estimate the distribution of extracted skeleton-based fea-

tures. For example, Xia et al. [68] partitioned the 3D space into a number of bins using a
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modified spherical coordinate system and counted the number of joints falling in each bin to
form a 1D histogram, which is called the Histogram of 3D Joint Positions (HOJ3D). A large
number of skeleton-based human representations using similar histogram encoding methods
have also been introduced, including Histogram of Joint Position Differences (HJPD)[60],
Histogram of Oriented Velocity Vectors (HOVV)[71], and Histogram of Oriented Displace-
ments (HOD)[80], among others [70, 76, 92-95]. When multi-modal skeleton-based features
are involved, concatenation-based encoding is usually employed to incorporate multiple his-

tograms into a single final feature vector [95].
2.4.3 Bag-of-Words Encoding

Unlike concatenation and statistics-based encoding methodologies, bag-of-words encod-
ing applies a coding operator to project each high-dimensional feature vector into a single
code (or word) using a learned codebook (or dictionary) that contains all possible codes.
This procedure is also referred to as feature quantization. Given a new instance, this en-
coding methodology uses the normalized frequency of code occurrence as the final feature
vector. Bag-of-words encoding is widely employed by a large number of skeleton-based hu-
man representations [59, 61, 65, 73, 83, 96-112]. According to how the dictionary is learned,
the encoding methods can be broadly categorized into two groups, based on clustering or
sparse coding.

The k-means clustering algorithm is a popular unsupervised learning method that is
commonly used to construct a dictionary. Wang et al. [109] grouped human joints into five
body parts, and used the k-means algorithm to cluster the training data. The indices of the
cluster centroids are utilized as codes to form a dictionary. During testing, query body part
poses are quantized using the learned dictionary. Similarly, Kapsouras and Nikolaidis [110]
used the k-means clustering method on skeleton-based features consisting of joint orientations
and orientation differences in multiple temporal scales, in order to select representative

patterns to build a dictionary.
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Sparse coding is another common approach to construct efficient representations of data
as a (often linear) combination of a set of distinctive patterns (i.e., codes) learned from
the data itself. Zhao et al. [59] introduced a sparse coding approach regularized by the
lo1 norm to construct a dictionary of templates from the so-called Structured Streaming
Skeletons (SSS) features in a gesture recognition application. Luo et al. [61] proposed
another sparse coding method to learn a dictionary based on pairwise joint displacement
features. This approach uses a combination of group sparsity and geometric constraints to
select sparse and more representative patterns as codes. An illustration of the dictionary

learning method to encode skeleton-based human representations is presented in Figure 2.4.
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Figure 2.4: Dictionary learning based on sparse coding for human representation [61].
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2.4.4 Summary

Due to its simplicity and high efficiency, the concatenation-based feature vector construc-
tion method is widely applied in real-time online applications to reduce processing latency.
The method is also used to integrate features from multiple sources into a single vector
for further encoding/processing. By not requiring a feature quantization process, statistics-
based encoding, especially based on histograms, is efficient and relatively robust to noise.
However, this method is incapable of identifying the representative patterns and modeling
the structure of the data, thus making it lacking in discriminative power. Bag-of-words

encoding can encode a feature vector using a sparse solution to minimize approximation
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error, and is also validated to be robust to data noise. However, dictionary construction and

feature quantization require additional computation.
2.5 Activity Classification and Prediction

Activity recognition in most research consists of classification of single activity sequences,
as opposed to temporal segmentation of mixed sequences. Many of these approaches [113-
118] are based on histograms of skeletal features, manually crafted in a variety of ways.
These feature histograms are built over the length of an action sequence and used to train
multi-class Support Vector Machines (SVM). Future action sequences can then be classified.
Other approaches train SVMs using other representations, such as building models of joint
trajectories for specific actions [72, 107, 119-122], and similar approaches model joint angles
involved in an action [123]. Approaches have also been developed to learn a representation
of an action using parametric networks [124] or random forests [125, 126], instead of defining
a manual representation.

A more difficult problem, and what I address in my gymnastics analysis system, is seg-
menting a video sequence that consists of multiple actions, and determining which frames
depict a particular action. A number of approaches have been applied to this problem:
Markov chains [127], dividing sequences into blocks with ‘fuzzy’ boundaries [128], k-means
clustering of segments [129], and classifying frames individually [130]. A similar line of re-
search is modeling sub-sequences within a video, without event annotations [131-133]. These
works divide a video into activities, without having knowledge of which specific activities
are being performed.

Different from conventional action classification [134, 135], several approaches exist in
the literature that focus on activity prediction, i.e., inferring ongoing activities before they
are finished. An early approach applied dynamic programming to do early recognition of
human gestures [136]. A max-margin early event detector was implemented in [13] to detect
early events. Logistic regression models [137] were employed to detect starting points of

human activities. An online Conditional Random Field method was introduced in [138] to
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predict human intentions in human-robot collaboration applications. In [120], an activity
classification approach based on a Naive-Bayes-Nearest-Neighbor classifier was shown to
produce similar levels of accuracy after seeing only 15-20 frames of an action as opposed to
the full activity; in essence, predicting the activity. Similarly, [139] demonstrated a system
for recognizing actions based on a single frame, but only showed successful results for very
simple gestures. [140] presented an approach that could be applied to activity prediction;
their work was focused on temporal segmentation; or dividing a sequence by activity as it
occurs. To do this efficiently they developed ‘event transition segments’ and ‘event transition
probabilities’. Being able to classify these correctly makes temporal segmentation possible
but also requires the ability to recognize these features (or the absence of these features)
during an activity; essentially, early activity recognition.

In general, prediction in the aforementioned methods is performed at the classifier level,
through extending conventional machine learning methods to deal with time in an online
fashion. Only a few approaches have been implemented at the representation level. For
example, [141] represented actions as a series of Kalman filters linked together in a sequence,
as a Markov chain. From this they were able to create a system that predicted the actions of
automobile drivers by observing preparatory movements. Our work builds on this by incor-
porating Extended Kalman Filters - building on their predictive power but recognizing that
joint motion for an entire skeleton is inherently a non-linear problem. Other works have built
on this Markov-based approach, particularly focused on predicting driver intention based on
actions (either the actions of the human driver or the actions of the vehicle [142-148], with
more reviewed in [149, 150]). Similar work was done in [151], using Hidden Markov Models
to predict future actions of a human supervisor. The action predictions were used to control
the behavior of a robotic system. A Markov-based approach was also developed by [152];
their method is focused on early prediction of human actions in order to facilitate human-
robot interaction with a table tennis playing robot. Their use case requires early activity

recognition in order for the robot to react to the shots of the human player. They formulate
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the problem as a Markov Decision Process, with visual observations being used to select
the correct anticipatory action. An approach that also incorporates the ability of Markov
functions to describe temporal dependencies is described in [153, 154]. Their work is not
based on recognizing actions from skeleton data, but instead models relationships between
simple constituent actions to predict more complex activities. They present a Predictive Ac-
cumulative Function to incorporate temporal sequences, probabilities of causal relationships
between actions, and context cues relating objects and actions symbolically.

A system that represents high-level activities as a series of logical predicates was devel-
oped in [155], which was able to analyze the progress of activities based on sub-event results.
They expanded on their work with a dynamic Bag-of-Words (BoW) approach in [156] to
enable activity prediction, which divides the entire BoW sequence into subsegments to find
the structural similarity between them. To capture the spatio-temporal structure of local
features, a spatial-temporal implicit shape model was implemented in [157] based on BoW
models. Despite certain successes of the BoW representation for human behavior prediction,
it suffers from critical limits. BoW-based representations cannot explicitly deal with view
angle variations, and therefore typically cannot perform well on moving robotic platforms.
In addition, computing BoW-based representations is computationally expensive, which in
general is not applicable in real-time onboard robotics applications. Moreover, the afore-
mentioned BoW representations do not make use of depth information that is available from

structured-light sensors.

2.6 Sports Analysis and Gymnastics

Analysis of coaches in various sports show that they value data-based analysis done by
sports scientists [158, 159] but that currently gaps exist in transferring this analytical knowl-
edge to those actually involved in coaching. Current vision based systems also require too
much operator input, something that can be difficult for non-technical users [160]. Addition-
ally, research often focuses on biomechanical principles at the expense of technical analysis

with the aim of improving performance [161].

21



In gymnastics, some work has been done analyzing the biomechanics involved in the
sport; [162] reviews biomechanical research into artistic gymnastics, aiming to identify the
variables that contribute to success in the sport. Research has been done to analyze the vault
event [163] and the parallel bar event [164]. For artistic gymnastics, camera based systems
were shown to significantly increase the accuracy of judging [165]. Pommel horse circles have
been focused on in a few studies, but nearly exclusively with the goal being biomechanical
analysis and not for performance evaluation or improvement. [166] studied the pattern of
wrist impacts during pommel horse routines, noting that smoother routines are less likely to
cause impact forces leading to injury. [167] conducted an analysis using force sensors built
beneath a pommel horse, focusing specifically on the velocity differences between single-hand
and double-hand circles. Their work continued in [168, 169], where they analyzed pommel
horse circles using a suspended aid. While this work doesn’t attempt to provide a qualitative
assessment as ours does, they did show that the use of an aid caused gymnasts to perform
circles with greater diameter and smoother hand movement. One notable study that was
aimed at performance improvement showed that feedback in the form of video review and
quantitative analysis (much like the visual feedback and automated analysis our system

produces) results in improved performance versus that of a control group [170].
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CHAPTER 3
AUTOMATED EVALUATION OF GYMNAST PERFORMANCE

Sports analysis is a useful application of technology, providing value to athletes, coaches,
and sports fans by producing quantitative evaluations of performance. To address this field
in the context of men’s gymnastics, I introduce a system that utilizes a Microsoft Kinect
2 camera to automatically evaluate the performance of a gymnast on the pommel horse
apparatus, specifically in regards to the consistency of the gymnast’s timing. The Kinect’s
ability to determine the depth at each pixel provides information not available to typical
sports analysis approaches based solely on RGB data. My approach consists of a three stage
pipeline that automatically identifies a depth of interest, localizes the gymnast, detects when
the gymnast is performing a certain routine, and finally provides an analysis of that routine.
I demonstrate that each stage of the pipeline produces effective results: my depth of interest
approach identifies the gymnast 97.8% of the time and removes over 60% of extraneous data;
my activity recognition approach is highly efficient and identifies ‘spinning’ by the gymnast
with 93.8% accuracy; and my performance analysis method evaluates the gymnast’s timing
with accuracy only limited by the frame rate of the Kinect. Additionally, I validate my system
and the proposed methods with a real-world online application, used by actual gymnastics

coaches and viewed as a highly effective training tool.
3.1 DMotivation

Sports are a phenomenon common to all cultures, and the popular interest in them
naturally causes people to wonder how athletes perform at high levels, and more importantly,
how those athletes can perform even better. Many sports, such as skiing and cycling, have
benefited from performance analysis. Automated analysis in alpine skiing increased athletes’
performance by identifying techniques to extend their glide, reducing the energy necessary to

maintain a competitive speed [171]. Similarly, in cycling analysis showed which movements
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were necessary and which were wasted on extended rides [172]. In addition, sports analysis
provides an interesting perspective to fans and viewers of a sport. Television shows such
as ESPN’s ‘Sports Science’ [173] capitalize on this, using video to highlight the impressive

abilities of popular athletes.

Figure 3.1: Pommel horse with Kinect camera. The pommel horse is a men’s gymnastics
event where spin and body angle consistency is important for scoring. I used a Kinect 2
[174] to record performances and create our analysis system. An example image from the
Kinect can be seen on the right.

One of the main challenges in the analysis of gymnastics, and sports in general, is the
limited amount of data available. Because it’s difficult to collect this data in a lab environ-
ment, and because access to high-level athletes is limited, sports datasets are rare. Limited
examples can be found in datasets such as the Carnegie Mellon motion capture dataset
[175] and the Multi-View TJU [176] depth-based dataset, but these are often more general
physical activities as opposed to the actions of high-level athletes. In addition, in order to
perform a useful analysis of a sports dataset, researchers must have knowledge of what an
ideal result would look like. With objective sports such as football and basketball, this can
be relatively simple - statisticians routinely calculate the expected values of decisions, e.g. in
football whether it is better to ‘go for it” on 4th and short versus conventionally punting the
ball to the other team [177]. However, subjective sports such as gymnastics, figure skating,

and many others that are scored by judges make this much more difficult. Researchers need
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knowledge of what these judges look for and what differentiates good performances from
bad ones. Additionally, analyzing many gymnastics events is difficult with a 2D camera.
Much of a performance happens in three dimensions, unlike a sport like football that can be

effectively analyzed with an overhead camera.
3.2 Gymnastics Dataset

Working with an elite gymnastics facility, I constructed a dataset consisting of gymnasts

performing on the pommel horse apparatus.
3.2.1 Recording the Dataset

As Inoted in Section 3.1, no extensive dataset exists that consists of depth imagery of high
level athletics, much less gymnastics or the pommel horse event specifically. Working with
a gymnastics training facility, I collected a dataset consisting of male gymnasts performing
on the pommel horse, seen in Figure 3.2. I believe that this dataset is a unique contribution
and will be of great to use to researchers working on vision-based analysis of many sports.

The dataset was recorded with the setup seen in Figure 3.1. The Kinect 2 camera was
placed in front of the pommel horse, and recordings were made at a variety of different

distances.
3.2.2 Details and Annotation

The dataset consists of 10115 frames of gymnasts performing on the pommel horse,
recorded as 16-bit PNG images. These images are organized into 39 routines, each of which
begins with the gymnast mounting the pommel horse and ends with the gymnast dismounting
the pommel horse. Some routines involve falls or dismounts during the routine, but in each
case the gymnast re-mounts the apparatus. Overall, the dataset contains a large variety
of situations: spinning (Figure 3.2(a)), standing (Figure 3.2(b)), mounting (Figure 3.2(c)),
dismounting (Figure 3.2(d)), miscellaneous moves such as handstands (Figure 3.2(e)), and

falls (Figure 3.2(f)).
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(d) Dismount (e) Handstand (f) Fall

Figure 3.2: A variety of dataset image examples. Figure 3.2(a) depicts spinning; Figure 3.2(b)
is a gymnast standing by the pommel horse; Figure 3.2(c) is a gymnast mounting the pommel
horse while Figure 3.2(d) is a gymnast dismounting; Figure 3.2(e) shows an example of the
variety of movements performed (in this case a handstand); and Figure 3.2(f) is a gymnast
falling from the pommel horse. Only Figure 3.2(a) is labeled ‘spinning’; all others are labeled
‘not spinning’.

The dataset was annotated to assign each frame an activity of ‘spinning’ (performing
circles) or ‘not spinning’ (e.g. mounting the pommel horse, dismounting, and other moves
such as scissors). In total, there are 6405 frames annotated as spinning and 3710 frames as
not spinning. Of the frames in which the gymnast is spinning, 2231 frames were annotated
with the locations of the head and feet of the gymnast. These positions at the left and

right extrema of a spin were interpolated using a cubic spline (described in Section 3.3.3) to

determine an exact ground truth timestamp and frame number for each extrema.
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3.3 Approach

My approach to this problem is a three stage pipeline, illustrated in Figure 3.3, beginning
with a depth image obtained from a Kinect 2. This depth image is processed to identify
likely depths of interest where the gymnast and pommel horse would be located in the scene.
Identified depths of interest are the input to a HOG based detector trained to identify silhou-
ettes of gymnasts. The localized silhouette is then used as input to the activity recognition
classifier, which determines whether the gymnast is spinning or not. As current skeleton
construction approaches such as the algorithm used in the Kinect SDK [2] do not provide
accurate joint locations for unusual poses such as a gymnast in the middle of a performance,
I define a new feature representation for activity representation based on the 3D information
present in a depth silhouette. If the gymnast is spinning, his performance is analyzed in
order to determine the speed of his spins and the angle of his legs. These values are used to
qualitatively evaluate the performance, and are also available as training data for gymnastics

coaches.

Depth Image Obtained > Depth of Interest > Gymnast Silhouette used

from a Kinect Segmentation to Recognize Action Performance Analyzed >

Figure 3.3: Visualization of the gymnastics analysis pipeline. The system 1) begins with a
depth image stream from a camera such as a Kinect, 2) identifies depths of interest likely
to contain the gymnast, 3) uses this identified gymnast silhouette to recognize when the
gymnast is performing circles, and 4) produces an analysis of the gymnast’s performance.
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3.3.1 Depth of Interest Segmentation and Gymnast Identification

My approach to segmentation is based heavily on the method described by [24], which
aims to locate depth ranges in the image which are likely to contain objects or people
of interest. I start with the depth image from the Kinect, instead of a point cloud, and
randomly select a sample of non-noise pixels n (e.g., 1000). Using a Parzen window [178§]
based approach, we can estimate a probability distribution function (PDF) for the depth
values in the entire frame. Each of the n sampled pixels is described with a Gaussian kernel,
whose width is based on the maximum depth in the frame, where x is the range of possible

depth values and D(7) returns the depth at index i.

—(z — D(1))”
2 x MAXDEPTH

PDF =) exp (3.1)
=1

I then identify the three highest peaks in this distribution (see Figure 3.4). These peaks
identify depths where we should focus our segmentation. Each peak is padded with a neigh-
borhood of 10% of the maximum depth (i.e. 800mm for the 8m maximum depth of the
Kinect 2) on either side of the peak. A sample of these segmented neighborhoods can be
seen in Figure 3.5.

The aim of the proposed ‘depth of interest’ (DOI) segmentation is to remove areas of the
image which are not likely to be relevant, in order to reduce the load on the human detection
process, and provide a cleaner image for later processing. Since the overall approach operates
on depth imagery, if the target depth is known it is trivial to remove the background and
foreground noise.

The DOI provides highly efficient segmentation proposals. Each DOI (e.g., ‘DOI 2’ in
Figure 3.5) is processed by a human detector based on HOG, which operates only on the
depth range identified. This detector is trained by randomly hand sampling a large variety

of gymnast poses and using these to train a SVM that will recognize a silhouette.
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Figure 3.4: Estimated probability distribution for the depth values in a frame. The three
identified depths of interest are marked at the bottom, corresponding to the three largest
peaks of the distribution.

3.3.2 Activity Classification

The next stage of the approach is recognizing the activity the gymnast is performing and
segmenting the video based on this. Since the performance analysis method is focused on
a specific portion of the gymnast’s routine (spinning / performing circles), it will generate
noisy data if applied to a different situation, such as the gymnast mounting the pommel
horse. In order to ensure an accurate analysis is generated, it is vital to know when the
gymnast is spinning.

Many activity recognition approaches are based on skeleton joint data. Since these ap-
proaches are inadequate to analyze situations like a gymnastics performance (see Figure 3.6),

I have defined a new activity recognition approach based on silhouette data. Additionally, as
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Original DOI 1 DOl 2 DOI 3

Figure 3.5: Example depth of interest segmentations for the probability distribution in
Figure Figure 3.4.

we do not know how long an action sequence will take or when a particular action will occur,
methods assuming that the start and end points of an event are known, such as histogram-
based methods commonly seen in activity recognition works, are difficult to apply. Instead,
each frame will be classified individually, similar to [88]. We describe a gymnast’s action
with a Silhouette Activity Descriptor in 3 Dimensions (SAD3D). The gymnast in each frame
is described by these features: 1) the width of their silhouette, 2) the height of their silhou-
ette, 3-4) the depth values at the leftmost and rightmost ends of the silhouette, and 5-8)
the shift in the left-most z, right-most x, upper y, and lower y coordinates compared to the
previous frame. A graphical description of SAD3D can be seen in Figure 3.7. As described
in the first stage of the pipeline, each frame in the dataset was automatically segmented to
identify the gymnast, and the identified silhouette was processed to obtain the described
feature vector. Additionally, each performance segment in the dataset was hand segmented
to identify whether the gymnast was spinning or not in each frame. This combination of
data was used to train a SVM that will identify whether a given frame depicted a spinning

gymnast or not. For two SAD3D features, x; and z;, we used a radial basis function kernel:

K (z;, 1) = exp —y||z; — 2 (3.2)

After classification by an SVM, we apply a smoothing technique that takes advantage of the

fact that activities are longer than a single frame in nearly every application. Where ¢; is
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Figure 3.6: Kinect skeleton construction error. The Kinect SDK attempts to construct a
skeleton for human forms. However, since it is trained on upright poses, it generates noisy
and inaccurate data when applied to gymnasts, such as this wildly unrealistic skeleton.

a binary class label, a frame being considered in a neighborhood of 5 frames is adjusted as

such:

a1 Y el (33

j=—2
This allows a single frame to be considered in the context of the surrounding frames, and

class labels to be adjusted accordingly.
3.3.3 Performance Analysis

The final stage of the pipeline is only performed if the gymnast was determined to be
spinning. The aim of this stage is to track these spins in order to analyze their consistency.

Using the identified silhouette from the human detection stage, vectors pointing from the
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Figure 3.7: Ilustration of the Silhouette Activity Descriptor in 3 Dimensions (SAD3D).
The feature describes the width and height of a silhouette, the depth values at the left and
right extremes, and the shift of the silhouette in both the x and y dimensions (indicated by
the red arrows).

center of the gymnast’s body to their head and feet were identified. Once the gymnast’s head
and feet are identified, accurately timing the spin around the pommel horse is a solveable
problem.

This approach is based on defining a major axis for the gymnast’s body, allowing for a
bend at the waist to connect the head and feet. The first step is defining the longest vector
from the gymnast’s center to his contour - either the axis to his head or feet. Then, the
‘waist’ is defined by identifying the shortest vector from the center to the contour, and the
corresponding 180 degree opposite. With this waist, we can find the other major axis of the
body - the vector that approximates the opposite of the original vector. If the original vector
points to the head, this will point to the feet. Otherwise, if the original vector points to the

feet, this vector will point to the head. These vectors can be seen in Figure 3.8.
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Figure 3.8: Ilustration of the vectors involved in feet tracking. The blue vector identifies
the location of the head, the red vector identifies the waist, and the green vector identifies
the feet. The yellow angles are equal, corresponding to a gymnast bent at the waist.

This information provides reliable information about when the gymnast’s feet are at
their left and right extrema, relative to the camera. To find an extrema on either side of the
pommel horse, the position of the gymnast’s feet is compared to the two points before and
the two points after the foot position. If the feet position is further to the left or further to
the right of the other four points, then it is considered the extrema of a gymnast’s spin.

These detected positions and timestamps are fitted to a cubic spline, to interpolate the
exact timestamp of an extrema, even if it is between the frames recorded by the Kinect
(Figure 3.9). Using this data, we compute the length of time it took for the gymnast
to complete the spin by tracking the amount of time between consecutive left extrema or

consecutive right extrema.
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Figure 3.9: Cubic spline fit to observed foot positions. The three black squares indicate the
positions of the gymnast’s feet near a far right extrema. Because of the limited frame rate
of the Kinect, fitting a spline to these points allows us to identify the specific timestamp of
the extrema of the spin.

In addition, the foot position is used to record the angle of the gymnast’s legs. As spins
with level legs (in relation to the pommel horse) are judged as better, our approach measures
the angle of the legs relative to the pommel horse. These angles are computed at both the

left and right extremes.
3.4 Experimental Results

In this section I present results for each stage of the proposed pipeline. The system was
tested on a setup consisting of a 1.7GHz i5 processor with 8 GB of memory. This setup was
used to validate the entire system, from recording gymmnasts with the Kinect all the way
through to analyzing the performances. The system was implemented in C4++ and Matlab,

with LibSVM [179] used as the activity classifier.
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3.4.1 Depth of Interest Segmentation

The depth of interest segmentation approach was tested to determine how often the
gymnast’s silhouette is located in one of the three proposed segmentations, and evaluated
by it’s ability to reduce the amount of data necessary for later stages to analyze. In addition
to the recorded gymnastics dataset, I also tested our approach on the CAD60 dataset [180].

Over a randomly selected sample of 500 frames, the described segmentation method was
performed and the proposals were presented to a human evaluator. The evaluator recorded
which proposal the gymnast was present in - if the gymnast was not completely present
in the segmentation (e.g., a foot was outside of the segmentation neighborhood), then the
proposal was not marked as correct. In our tests, 53.2% of proposals corresponding to the
highest peak in the previously described PDF contained the gymnast’s entire silhouette;
the second highest peak contained the silhouette 36.6% of the time; and the third highest
peak contained the silhouette only 8% of the time. Overall, our depth of interest approach
contained the gymnast’s complete silhouette in the top three proposals 97.8% of the time;
and contained it in the top two proposals 89.8% of the time.

We also show that our approach drastically reduces the amount of data that later stages of
the pipeline need to process. On average, original frames obtained from the Kinect contained
71255.71 non-zero pixels (out of a total possible of 217088 pixels at the 424x512 resolution).
After segmentation, frames containing the gymnast had an average of 26948.17 non-zero
pixels; this means that our method allows later stages of the pipeline (and further processing
in other applications) to perform calculations on only 37.8% of the original data.

Additionally, we evaluated the depth of interest method on the CAD60 dataset, which
consists of depth imagery of a variety of human activities. We measured the percentage of
frames where the subject of the activity appeared in the proposals suggested by our method,
using a similar sample size. The subject appeared 18.92% of the time in the first proposal,
66.67% in the second, and 14.41% in the third - there were zero instances where none of

the proposed segmentations was correct. The large amount of occurecnces in the second
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proposal is due to the fact that some scenes in the CAD60 dataset have furniture closer to
the camera than the subject. The gymnastics dataset has no objects between the camera
and the pommel horse, so the first peak contains the gymnast more often the other two
peaks. We also see that there was a similar reduction in the amount of data remaining
after segmentation. Originally, the CAD60 frames contained an average of 61674.22 non-
zero pixels. After segmentation, correct proposals contained only 23070.82 pixels on average,
only 37.4% of the original data.

The depth of interest segmentation approach runs in real-time. On average, this method
can generate proposed segmentations and run a HOG silhouette detector in only 26ms per

frame.
3.4.2 Activity Recognition

The SAD3D feature was first evaluated on our constructed dataset. The data was split
into 5024 training frames and 5091 testing frames, and our feature was computed for each
frame. Using this representation, we were able to classify 93.81% of frames correctly, effec-
tively segmenting the data. After the smoothing process, accuracy improved to classifying
94.83% of frames correctly.

Additionally, the approach was evaluated on the MSR Daily Activity 3D [181] dataset.
We constructed our SAD3D feature from the ground truth joint data present in this dataset
- e.g. the width of the silhouette was judged to be from the leftmost joint to the rightmost
joint. Our approach was tested with these action types: ‘cheer up’, ‘lie on sofa’, and ‘walk-
ing’. Initially, SAD3D recognized 72.1% of frames correctly. After the smoothing described
previously, this accuracy improved to 74.8%, making it competitive with existing activity
recognition approaches while only using basic silhouette data (see Table 3.1).

With an identified silhouette, we are able to construct our feature representation in a
trivial amount of time. Additionally, we are able to classify over half a million frames per

second, a benefit of our low-dimensional feature.
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Table 3.1: SAD3D activity recognition accuracy on the MSR Daily Activity 3D dataset. The
performance of previous representations is compared to our representation’s. Note that our
accuracy was computed for only a portion of the dataset.

| Representation | Accuracy |
Dynamic Temporal Warping [181] 54.0%
Distinctive Canonical Poses [137] 65.7%
Actionlet Ensemble (3D pose only) [181] 68.0%
Relative Position of Joints [100] 70.0%
Moving Pose [182] 73.8%
Our SAD3D Representation 74.8%

3.4.3 Performance Analysis

The described method to detect the position of the gymnast’s head and feet was evaluated
against the dataset, for frames in which the gymnast was performing circles. As our dataset
has a ground truth for both the time and frame number of each spin extrema, we compared
our method against both. The foot detection algorithm was used to produce a timestamp,
which was also mapped to a frame number.

In evaluation, the timestamps obtained from our performance analysis method were com-
pared to the ground truth. The described approach achieves a root mean squared error
(RMSE) of 12.9942ms from ground truth timestamps, with a frame number RMSE of 0.2393
frames. It achieves an average absolute error (treating a detection of 5ms late the same as
a detection bms early) of 7.8168ms and 0.1352 frames. Additionally, errors were extremely
clustered with few outliers - the standard deviation of timestamp errors was 12.7105ms, and
the standard deviation of frame errors was 0.2361 frames.

Over the dataset, an average elite gymnast spin is 973ms, with a standard deviation of
67ms. If the first and last spins of a routine are removed (i.e. corresponding to mounting and
dismounting the pommel horse), the mean time drops to 960ms with a standard deviation of
25ms. A graph showing spin times over a routine can be seen in Figure 3.10. Given this, the
RMSE of our approach is below the standard deviation of a spin, meaning that the described

method is accurate enough to analyze even extreme consistency of elite gymnasts.
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Figure 3.10: Gymnast spin times graphed over a routine. The black line indicates the trend,
an example of the analysis our system makes available to coaches.

The described performance analysis approach runs in real-time on our system. It is able
to process over 66 frames per second, putting it far ahead of the 30 frames per second limit

of the Kinect and comparable cameras.
3.5 Case Study in a Real-world Application

Our described method was integrated into a complete application, available for gym-
nastics coaches to use. The application allows coaches to record and analyze routines, and
automatically scores them on spin time consistency and body angle consistency. Addition-
ally, it allows coaches to record routines and scores for multiple gymnasts, tracking their
progress and providing an average consistency score as they progressed.

As seen in Figure 3.11, the application is simple and well organized. Coaches simply
have to position the Kinect in front of the pommel horse and begin recording routines. The

application is currently being used by coaches at an elite gymnastics facility to record and
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track their gymnasts.

Figure 3.11(a) shows the recording screen. This gives coaches a live preview of what the
Kinect is seeing, with the green vector indicating the current tracked position of the gym-
nast’s feet. Seeing this allowed coaches to better understand how the system was generating
the analysis. Figure 3.11(b) shows the analysis screen, which gives coaches a visual repre-
sentation of their gymnast’s performance. The green circles illustrate consistency ‘scores’
for both spin timing and leg angle, while the graph below shows times for individual spins
in the routine. This allows coaches to identify where gymnasts are having problems - for
example, increased or erratic spin times near the end of a routine would point to a prob-
lem with the gymnast’s cardiovascular conditioning. Figure 3.11(c) shows the applications
ability to track multiple gymnasts. Coaches can review a gymnast’s performances, allowing
them to see trends over time and identify gymnasts that are improving versus ones that need
coaching adjustments.

Our described three-stage pipeline approach has many desirable characteristics. Some of
these allow for increased usability for end users compared to hypothetical approaches, while
others arise from the fact that our system is generalizable.

The method is completely automated, which makes it a very flexible system ideal for use
by non-technical individuals. Because the approach can automatically localize the gymnast
without specific depth or size constraints, users (such as gymnastics coaches) can place
the Kinect at a distance and position convenient to them, instead of enforcing a particular
pose. Similarly, the method’s ability to identify a depth of interest and recognize a human
form in that neighborhood is key. A naive approach may use a background subtraction
based approach to remove noise and identify the gymnast, but this would require the user to
record an ‘empty’ segment before actually performing any analysis. Our approach avoids this,
allowing coaches to have gymnasts begin training immediately. Additionally, our approach
avoids issues that would arise for background subtraction if the camera was moved during

the performance - this would cause the ‘background’ to no longer correctly correspond to
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Figure 3.11: Screenshots from the gymnastics analysis application. The application is simple
and intuitive, ideal for non-technical users. Figure 3.11(a) shows the main screen used to
record a performance. Figure 3.11(b) shows an evaluation of the gymnast’s spin consistency
and leg angle. Figure 3.11(c) shows the ability to track the progress of multiple gymnasts
and play back their performances.

the current frame, causing an incorrect segmentation.

Our method also generalizes very well to a variety of situations. Because it is based solely
on the depth information obtained from the Kinect, it is lighting-invariant. This allows it to
be used in a variety of spaces that have different lighting conditions from where the original
dataset was recorded.

The drawback to our described approach is that it has a lower limit on accuracy, based
on the frame rate of the camera used. Currently, our system uses a Kinect 2 which operates

at 30 frames per second, or 33 milliseconds between frames. As the RMSE of a detected spin
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is less than this time, camera frame rate is currently the limitation on our system’s accuracy

- with a faster depth camera, our system could obtain even more accurate results.
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CHAPTER 4
BIPOD SKELETAL REPRESENTATION

Activity prediction is the problem of recognizing the intent of an action based on in-
complete information - i.e., the recognition of actions before they have finished occuring.
Accurate prediction of activities is relevant to many applications, such as surveillance. A
representation called BIPOD, for Bio-Inspired Predictive Orientation Decomposition, was
introduced to solve this problem by Zhang and Parker [183]. In this chapter, I discuss my
contributions to extending this work by validating its effectiveness for real-world human-
robot interaction.

As its name suggests, BIPOD is inspired by biological research. Human joint trajectories
in 3D are projected into three anatomical planes, and their movement through these planes
over time is encoded in order to represent actions. Extended Kalman Filters (EKFs) are used
to reduce noise in the joint position data, and to extend joint trajectories into the future,
providing the ability for BIPOD to predict activities that have not yet completed.

BIPOD outperforms previous solutions to real-time activity recognition and activity pre-
diction. I validate its use in real-world interaction with a Baxter humanoid robot, showing

that it is both accurate and efficient.
4.1 Motivation

The ability to predict human behaviors is critical in many human-centered robotics sce-
narios, such as human-robot teaming. Recognizing a behavior as it is occurring, or predicting
it from incomplete information, allows robots to interact more efficiently with humans and
to respond more quickly to time sensitive tasks. A motivating example is illustrated in
Figure 4.1. Most activity recognition methods proposed previously focus on recognizing

completed activities after they have occurred [134, 184, 185].
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Figure 4.1: Motivation for the problem of activity prediction, modified from [183]. A robot
needs to recognize human activities as they occur and make a decision based on incomplete
information, such as the decision to provide help when a human is falling.

Activity prediction is a challenging problem. It faces all of the same issues as typical
activity recognition: visual occlusions, varied body sizes, differences in how individuals per-
form the same basic activities, and general machine learning challenges involved in classifying
data. Attempting to perform activity recognition on a robotic platform adds challenges in
computing power, time constraints, and often varied human poses even in a single scene. Ac-
tivity prediction must face these challenges, and then attempt to solve them using incomplete

data.
4.2 Approach

To address this challenging activity recognition problem, Zhang and Parker [183] intro-
duced a formulation called Bio-Inspired Predictive Orientation Decomposition, or BIPOD.
In order to give context to my contributions in validating BIPOD, I briefly describe the

approach.
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Figure 4.2: Explanation of anatomical planes, modified from [183]. Divisions made by the
planes are shown, as well as example of activities visualizing motion through each plane
[187].

The BIPOD representation, as its name suggests, is inspired by biological research. In
human anatomy, the body can be divided by three planes. The sagittal plane divides the
body into left and right, the coronal plane divides the body into front and back, and the
transverse plane divides the body into top and bottom [186]. Figure 4.2 illustrates this and
shows how motions can be interpreted as limbs move through these planes.

This biologically inspired representation means that all motions can be represented
uniquely with BIPOD, as it represents motions based on movement through these planes. It
also makes BIPOD an ideal method for biomechanical research, as researchers in that field
would naturally understand the anatomical plane divisions.

A key component of the BIPOD representation is estimating these anatomical planes.
This is done by first estimating the coronal plane, which divides the body into front and

back. To do this, M torso joints are identified. Each joint has a location (z,y,z), and a
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plane can be fitted by Az + By + Cz + D = 0. A joint (z., y., z.) that lies on the plane is
estimated by taking the center of the M torso joints. Then, parameters A, B, and C' must
be found that pass through this center joint and minimize the distance of each torso joint to
this plane. This is solved using Singular Value Decomposition [188].

Next, the direction of the coronal axis must be determined, i.e. whether the person is
facing towards or away from the sensor. A simple face detector based on Haar cascades [189]
is used to analyze the area around the head joint. If a face is detected, then the coronal axis
is set to point towards the sensor (but perpindicular to the coronal plane). If a face is not
detected, then the coronal axis points in the opposite direction.

Knowing the coronal plane is necessary to compute the sagittal and transverse planes.
First, compute the torso center as the center of the M torso joints. The transverse plane
lies perpindicular to an axis pointing from the torso center to the head joint. The sagittal
plane is then perpindicular to these two planes.

BIPOD uses these three planes to decompose motion vectors of each joint. As each joint
moves through 3D space, it moves in relation to each plane. Instead of a single vector, BIPOD
describes joint motion with 3 vectors, each corresponding to one of the three anatomical
planes. These motion vectors are then converted to angles between temporally adjacent
motions - i.e., a motion that occurred at time ¢t and a motion that occurred at time ¢ + 1
would be described by the angle between these vectors. In order to encode actions with
longer time scales, BIPOD creates a temporal pyramid of these angles over varying time
steps. Each level of the temporal pyramid is accumulated into a histogram, which is the
final representation used by BIPOD.

This final representation allows BIPOD to encode spatial information, as a joint moves
through the three planes, and temporal information, as it builds histograms of changes in
joint positions over time.

The remaining component of BIPOD is what enables it to predict future activities. As

joint positions are recorded over time, they are processed by a set of Extended Kalman
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Filters (EKFs) [190]. One EKF is used for each limb of the body, with a fifth for the torso.
Separate EKFs are used for two reasons; first, it is computationally faster to divide the
body into smaller sub-spaces, and second, many actions are independent of other limbs (e.g.,
waving depends on only the moving arm and not either leg).

As joint positions are processed by these EKFs, noise introduced by sensors is filtered
out. However, their primary use is the prediction of future joint positions. By generating a
set number of future positions for each joint based on the current state, and incorporating

this into the representation, BIPOD enables its predictive abilities.
4.3 Experimental Results

BIPOD was evaluated on benchmark datasets, and perfomed better than state-of-the-art
methods [183], achieving 79.7% accuracy on the MSR Daily Activity 3D dataset [181] and
96.7% on the HDM05 MoCap dataset [30]. In this section, I present results in validating
BIPOD by utilizing it to interact with a Baxter robot and demonstrate its ability to predict
actions based on incomplete information.

The Baxter robot, seen interacting in Figure 4.3(a), is ideally suited for human-robot
interaction as it can ably mimic human activities. Additionally, it is designed for safe oper-
ation around humans, unlike typical industrial robot arms. The Baxter robot was equipped
with a Kinect sensor mounted on the ‘chest’, and all processing was done on a a networked
Linux desktop. Skeleton data was obtained through OpenNI running on ROS, providing 15
joints.

Four new activites were created that would be used to interact with Baxter in order to
control him through the process of making and serving a drink. Each is able to be performed
on either side of the body, for a total of eight new activities: (1) pick up, (2) pour, (3) serve,
and (4) put down. Ideally, a user could command Baxter to pick up a glass and a beverage,
pour a drink, and serve it - with either arm. These activities were designed to be bilateral
for two important reasons. First, BIPOD divides the body into three planes, one being

the sagittal plane which divides the body into left and right halves. This means BIPOD
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explicitly encodes left /right information into its representation - something often lacking in
other representations and datasets (e.g., the MSR dataset classifies waving with either the
left or right arm as a single activity class). Second, creating separate activity classes for
actions based on the side of the body on which they are performed makes human-robot
interaction easier and more intuitive. The human can use this ability to control a specific
arm or side of the robot he or she is interacting with, and it provides options to those who
may have one arm missing or disabled.

Two human subjects were recorded performing 20 executions per subject of each action,
for a total of 40 instances of each action and 320 instances overall. The actions were recorded
in an open-room lab environment, seen in Figure 4.3(a). Because these were new activities
not present in an existing dataset, half of the data was used for training and half for testing.
In order to validate the BIPOD representation, I compared it with two current popular
skeletal representations: histograms of oriented displacements (HOD) [114], and histograms
of joint position differences (HJPD) [115].

Figure 4.3(b) shows the confusion matrix produced by the described BIPOD approach -
each column represents the predicted class and each row represents the actual class. All eight
activities are shown to include both their left and right versions, labeled ‘Pick Up (L)’, ‘Pick
Up (R)’, etc. As it illustrates, BIPOD is able to capably recognize the described actions,
with no inaccuracies coming due to the bilateral nature of the actions. Overall, the approach
classifies only four instances incorrectly - making it 96.88% accurate. A comparison with
HOD and HJPD is shown in Table 4.1. While HOD and HJPD both perform well (93.13%
and 94.38%, respectively), BIPOD does outperform both of them.

Additionally, BIPOD outperforms both of these representations in the early prediction
of activities. BIPOD’s activity prediction capabilities are quantified in Figure 4.3(c), com-
pared again to HOD and HJPD. As these figures demonstrate, BIPOD is more accurate at
predicting an activity class early at every point in time. It reaches over 50% accuracy only

halfway through the activity, beating HOD by 31.25% and HJPD by 18.13% at that point.

47



100

pick up (L)
pick up (R) 80
pour (1)
pour (R)

60 |-

serve (L)

Accuracy (%)

40

serve (R) [

" [~ HOD
-x- HJPD
-8~ BIPOD ||

put down (1) 8

put down (R) o * "’; . L I T I
20 40 60 80 100
Percentage of observed data

(a) Environment Setup (b) Confusion matrix (¢) Prediction ability

Figure 4.3: Experimental results on Baxter. Figure 4.3(a) illustrates the experimental setup,
with Fei Han interacting with Baxter. Figure 4.3(b) shows the confusion matrix for activity

classification, and Figure 4.3(c) displays the accuracy rates for early prediction of activities
for HOD [114], HJPD [115], and BIPOD.

Table 4.1: BIPOD activity recognition accuracy on Baxter, compared with previous skeleton-
based representations.
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Finally, BIPOD runs significantly faster than the 30 frames per second of data that
is provided by the Kinect or a comparable RGB-D sensor and associated software (e.g.,
OpenNI). Because of this, the joint position interpolation provided by the EKF is extremely
useful for systems built on BIPOD’s abilities. On a 2.7Ghz laptop with 4Gb of memory,
the BIPOD representation can be constructed at 3600 ‘frames’ per second - a ‘frame’ being
either a representation built from skeleton data (with EKF processing to reduce noise) or a
representation interpolated by the EKFs between frames of actual skeleton data. Using a

pre-built SVM, these representations are able to be classified at a rate of 2800 per second.
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4.4 Discussion

BIPOD has many advantages which make it ideal for the increasing crossover of computer
vision, robotics, and bio-mechanics. Its biology inspired roots means it builds on research
about human biology and anatomy, instead of attempting to reinvent it in a way that makes
sense to computer scientists. This is apparent in its ability to clearly distinguish bilateral
actions - something often not considered in other representations and major existing datasets.
For example, this means it can distinguish between waving with the left hand versus waving
with the right hand, while they are labeled as the same action in the MSR Daily Activity
3D dataset.

Additionally, it possesses several desirable characteristics from a computer vision and
machine learning standpoint. It runs at a speed which will allow it to be applicable as
RGB-D sensors improve. Currently its ability to interpolate between frames makes it ideal
for time-sensitive actions, but its speed also means it will adapt well as frame rates improve
and skeleton data is available faster than 30 frames per second. Finally, the division of joint
spaces into separate Kalman filters means that BIPOD is able to adapt to many applications;
it can be easily altered to represent only specific portions of the body and thus only predict

and recognize actions from that portion.
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CHAPTER 5
CONCLUSION

In this thesis, I demonstrate the applicability of depth imagery to the fields of sports
analysis and human activity recognition. In both areas, I describe novel applications that
address current limitations in the fields.

I introduce a novel system able to effectively provide an analysis of a gymnast’s perfor-
mance. My system addresses the problem of producing an automated analysis of a gymnast’s
performance on the pommel horse using a portable 3D camera, the Microsoft Kinect. This
problem has been difficult in the past, but depth imagery provides a capable solution. The
Kinect allows us to effectively segment the scene to identify a depth of interest, localize a
gymnast within that region, identify what parts of a routine when a gymnast is performing
circles, and then provide an accurate analysis of their performance. I can identify a depth
of interest with 97.8% accuracy, detect spinning with 93.8% accuracy, and then analyze
spin consistency with less than a 13ms RMSE, far less than the Kinect’s 30 frames per sec-
ond frame rate. With this method, it is possible to provide a real-world application that
makes this analysis available to gymnastics coaches, providing them a quantitative basis for
improvement.

I also introduce my contributions to the BIPOD representation, that enables intelli-
gent robots to predict human activities in real time from 3D skeletal data in practical
human-centered robotics applications. The BIPOD approach is inspired by biological human
anatomy research, which provides theoretical guarantees that the proposed representation is
able to encode all human movements. To construct the BIPOD representation, we estimate
human anatomical planes, decompose 3D skeleton trajectories, and project them onto the
anatomical planes. We describe time information through computing motion orientations on

each plane and encoding high-order time dependency using temporal pyramids. In addition,
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to endow our representation with the predictive capability, we use the simple yet effective
EKF technique to estimate future skeleton trajectories, which can also reduce noise and deal
with missing observations or occluded joints. We perform empirical studies, using a Baxter
humanoid robot, to validate the performance of our BIPOD representation in an ongoing
human activity recognition task, and demonstrate our representation’s real-world and online
capabilities. In addition, our BIPOD representation is compared with methods in previ-
ous studies on activity classification and prediction, using the MSR Daily Activity 3D and
HDMO05 MoCap benchmark datasets, as well as a new dataset that is recorded specifically
for interaction with Baxter. Experimental results demonstrate that BIPOD significantly
improves human activity recognition accuracy and efficiency and successfully addresses the

challenging activity prediction problem in real time.
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