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Abstract— Understanding unknown multi-agent systems
solely from observations without prior knowledge of the sys-
tems’ composition or structure is critical for effectively respond-
ing to and interacting with them. Whether the unknown system
consists of humans, robots, or other entities, the capability to
discover the roles that various agents play in the multi-agent
system is necessary to fully understand it. While existing work
often focuses on predicting future trajectories or behaviors,
there has been little research on identifying agents that share
roles within a multi-agent system. Discovering shared roles
enables a fuller understanding of the system and its future
behavior, i.e., agents that share a role could be expected to
behave similarly. In this paper, we propose a novel approach
for role discovery in an observed multi-agent system. We first
present a method to learn a unified temporal representation
of the multi-agent system through a temporally weighted ap-
proximation of graphs describing relationships between agents
at each time step. We then present our main contribution,
where we formulate role discovery as a regularized optimization
problem with the goal of learning the optimal role assignment
based on the unified temporal representation. Our approach
learns probabilities that agents play different roles while also
discovering the number of distinct roles that exist in the multi-
agent system, and is proven to converge to the optimal solution.
We also introduce a new role recognition dataset and evaluate
on an existing dataset, showing that our approach outperforms
existing methods in discovering roles in an observed multi-agent
system.

I. INTRODUCTION

Multi-agent systems are ubiquitous in modern life [1].
Whether these agents are robots, software programs, or
humans, these systems have complicated structures and inter-
nal relationships [2]. Autonomous systems are increasingly
tasked with interacting with unknown multi-agent systems
for a variety of homeland security, military, and domestic
applications, such as automated surveillance systems that
monitor crowds of pedestrians for possible threats [3] or so-
cial media companies that analyze their networks to identify
influencers and information hubs. In order for autonomous
systems to interact successfully with unknown multi-agent
systems, they must be able to generate an understanding
of the internal structure of the system based solely on
observations.
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Fig. 1. Our approach discovers roles within a multi-agent system and
assigns each agent a role. In (a), a multi-agent system is observed over
time, and a unified temporal representation is learned. In (b), a shared
role matrix learned from the unified representation is factored into role
probability matrices. In (c), the role probability matrix is used to discover
roles for each agent and discover the number of roles in the multi-agent
system.

A key part of understanding this internal structure is
discovering roles within the multi-agent system and iden-
tifying which agents play which roles. While recognizing
the specific role an agent plays in a multi-agent system
requires a priori knowledge of the system’s structure or
purpose, discovering the assignment of agents to roles can
be accomplished from observations of the system. Shared
roles among agents can provide valuable insight not only
into a system’s structure, but into the future behavior of the
multi-agent system.

While analysis of unknown multi-agent systems has been
extensively researched for trajectory and behavior prediction
[4], [5], role discovery has seen limited study. Multi-agent
systems are often assumed to have a known structure, with
roles such as communication hubs [6] or leaders [7] being
defined before the system is interacted with. When roles in a
multi-agent system are unknown, they have been indirectly
addressed as a byproduct of computer vision-based team or
group analysis [8], [9], or framed as a node classification



problem in very large static graphs [10]. While recent work
has worked to cluster roles and then select clusters [11],
the problem of discovering role assignments and the number
of roles being played in a unified formulation for unknown
dynamic multi-agent systems is largely unaddressed.

In this paper, we introduce a novel unsupervised learning
method to discover shared latent roles in a multi-agent
system based on observations of it over time. We first present
a novel unified temporal representation of a multi-agent
system, incorporating the positions and observed attributes of
agents at multiple time steps into a temporally weighted ap-
proximation. Then, we introduce a role discovery framework
based on two regularized optimization formulations. Our
approach first learns shared role indicators that minimize the
cost of agents sharing a role. We then factor this shared role
indicator matrix to discover the probability that an agent is
assigned to a specific role. By processing this role probability
matrix, we discover which agents actually share a role and
also discover the number of roles present in the multi-
agent system. We prove that our approach converges to the
optimal solution, and show through experimental evaluation
on both an existing role recognition dataset and a new role
recognition dataset which we introduce that our approach
is able to accurately discover roles, outperforming existing
approaches.

This paper contains three important contributions.
• First, we present a novel approach for role discovery in

an unknown multi-agent system, based on a newly in-
troduced unified temporal representation. Our approach,
based on a multi-step regularized optimization frame-
work, is able to accurately identify which agents share
which roles. Our approach is also able to simultaneously
discover the number of roles present in a multi-agent
system, eliminating the need to know this a priori about
an unknown system.

• Second, we theoretically prove that our approach learns
the optimal role assignment and demonstrate its effec-
tiveness through experimental results.

• Finally, we introduce a new dataset for role recognition.
This dataset consists of variably sized dynamic multi-
agent systems, with observed position changes, commu-
nication behaviors, and ground truth role labeling.

II. RELATED WORK

A. Representing Multi-Agent Systems

Multi-agent systems have been modeled in a wide variety
of ways. As many of these use models based on known agent
types, hierarchies, available behaviors, and other information
known about the structure of the multi-agent system [2], they
are difficult to apply to unknown multi-agent systems where
the only information available is from observations. In this
case, graphs become the most used representation, where
vertices represent agents and edges represent a relationship
between them [12]. Edges have been used to represent a con-
trol relationship [13], [14] or the immediate neighborhood of
an agent [15], [16]. Edges have also been used to represent

communications between agents [6] or the probability of
agents staying together as they move over time [17], [18].
Recent work has seen the learning of unified representations
from arbitrary input relationships, allowing edges to approx-
imate multiple forms of relationships between agents with a
single value [19].

B. Role Discovery in Multi-Agent Systems

In multi-agent systems, role discovery has been ap-
proached from the perspectives of computer vision and graph
theory. In computer vision-based approaches, social roles
have been analyzed from a first person view perspective,
where the multi-agent system is considered to be the indi-
viduals in the current frame [20], [21]. This has also been
performed from videos with wider vantage points, such as
surveillance videos [3] or aerial videos [5]. Much of this
work has used role assignment as a byproduct of other
applications, such as behavior prediction [4] or localization
[22]. Additional work has been done to match observed
social interactions to known examples [23] or to identify
groups which are travelling together in crowded scenes [9].

In graph theory, role discovery has mainly focused on
structural roles in large graphs, with the aim of identifying
nodes that connect clusters, act as outliers, serve as com-
munity centers, and more [10], [24], [25]. Recent work has
extended this to ‘small’ networks, where structure is less
influential [26], with the aim of partitioning small social
networks [27] or identifying coalitions [28]. While classic
graph cut methods such as modularity [29]–[31] have been
used to identify communities, new ones have been proposed
based on the roles that nodes play. These include extending
modularity to identify hubs and outliers [32], detecting
communities [33], or using neural networks to classify nodes
[34].

While there has been significant research in this area,
the problem of discovering role assignments in a multi-
agent system over time while simultaneously discovering the
number of roles present is an open problem.

III. OUR PROPOSED APPROACH

Notation. In this paper, matrices are denoted using bold-
face uppercase letters or italicized uppercase letters, and
vectors using boldface lowercase letters. For a matrix M =
{mij} ∈ Rp×q , we refer to its i-th row as mi and its j-th
column as mj , and the element in the i-th row and the j-
th column as mij . For a variable that is representative of a
certain point in time, the time is denoted with a parenthetical
superscript, as in x

(t)
i . A vector of ones is denoted as

1n ∈ Rn and the identity matrix is denoted as In ∈ Rn×n,
or simply I if the dimensions are clear from context.

A. Preliminaries

We consider a multi-agent system consisting of n agents.
Each agent has a known position in space, denoted in
X(t) ∈ Rd×n, with x

(t)
i ∈ Rd representing the d-dimensional

position of the i-th agent at time t. We also consider attributes
in Z(t) that describe each agent, with z

(t)
i representing the



i-th agent at time t. An attribute describing an agent could
be a visual representation, a behavior, or other possibilities.

Our proposed approach constructs a unified temporal rep-
resentation of the multi-agent system by approximating the
observed positions and attributes over time. We then identify
a minimum cost shared role matrix, which is then factored
to learn the role assignment probabilities. In doing so, our
approach discovers a role assignment for each agent, while
also discovering the number of roles that exist in the multi-
agent system.

TABLE I
LIST OF NOTATION USED IN OUR PROPOSED ROLE DISCOVERY

APPROACH.

Variable Definition

x
(t)
i Position of agent i at time t.

z
(t)
i Attribute of agent i at time t.

a
(t)
ij Relationship of agents i and j at time t.

A(t) ∈ Rn×n Representation of multi-agent system at time t.

A ∈ Rn×n Unified temporal representation of a multi-agent system.

U ∈ Rn×n Shared role indicator matrix.

uij Probability that agents i and j share a role.

W ∈ Rn×m Role probability matrix.

wij Probability that agent i plays role j.

r ∈ Rn Role assignment vector.

m̂ Identified number of roles in a multi-agent system.

m̃ Ground truth number of roles in a multi-agent system.

B. Representing the Multi-Agent System

Given the observed positions X and observed attributes Z
over time, we construct a unified temporal representation of
the multi-agent system. We construct a unified representation
A(t) ∈ Rn×n at each time step t, where a

(t)
ij represents

the separation relationship between the i-th and j-th agent
at time t. Then, these representations at each time step
are combined into a unified temporal representation A,
representing the entire multi-agent system over t = 1, . . . , T .

First, we incorporate the spatial relationships between
agents. Rather than considering the distance between in-
dividual agents, we consider the relative distance in the
multi-agent system. Intuitively, agents that are both centrally
located would play similar roles in the system, just as
agents on the exterior would play similar roles. This also
incorporates agents that are spatially near each other, as
this would result in a similar distance from the centroid.
We calculate the centroid c(t) of the multi-agent system at
time t and define the separation between the i-th and j-th
agents to be the absolute difference in their distances from

this centroid:

c(t) =
1

n

n∑
i=0

x
(t)
i (1)

d
(t)
i = ‖x(t)

i − c(t)‖2 (2)

a
(t)
ij = abs(d(t)i − d

(t)
j ) (3)

We next incorporate the observed attributes of each agent.
If no additional attributes are available to describe an agent,
then Eq. (3) is solely used to determine the similarity
a
(t)
ij . An observed attribute of an agent could represent a

variety of different features, such as a histogram representing
the color appearance of an agent, or a vector representing
its communication with other agents. We again utilize the
distance between two attribute representations, adding this
to the spatial similarity measure:

a
(t)
ij = αabs(d(t)i − d

(t)
j ) + (1− α)‖z(t)i − z

(t)
j ‖2 (4)

Here, we also use hyperparameter α to balance the relative
importance between a position x

(t)
i and an attribute z

(t)
i ,

which can assign equal weight or be expert-defined based
on the multi-agent system being observed. We note that this
part of our proposed approach could also be modified with
distance functions that better fit the specific x and z forms
of different multi-agent system observations.

We now have a unified representation matrix A(t) describ-
ing the relationships between agents at time point t. To in-
tegrate this into a unified temporal representation describing
the multi-agent system over time, we learn an approximation
of all available time steps, with a decay factor to value
older observations less than newer observations. This unified
temporal representation is defined as A, indicating an overall
representation representing the entire time period and without
the time step superscript:

min
A

T∑
t=0

γ(t)‖A −A(t)‖2F (5)

Here, γ is a weighting parameter from a sequence such
that γ(t+1) > γ(t)) > γ(t−1). We now have a unified
representation of the multi-agent system in A, which incor-
porates observed relationship representation matrices A(t)

from previous points in time.

C. Discovering Multi-Agent Roles

In a multi-agent system, the number of possible roles m
that agents can play is bounded such that 1 < m < n. If
m = 1, then all agents share the same role, which does
not offer useful insight into the structure of the multi-agent
system. Similarly, if m = n, then each agent plays a role
by itself, which is again not informative about the observed
system. In this section, we propose to learn a probabilistic
role assignment where we identify the probability that the
i-th agent plays the j-th role, enabling the discovery of each
agent’s role assignment and the number of roles.

First, we recognize that we want to avoid a result where
m = 1, where each agent is assigned to a role by itself.



Algorithm 1: Role Discovery Algorithm

Input : X(t), t = 1, . . . , T : Agent positions for T
points in time.
Z(t), t = 1, . . . , T : Agent attributes for T

points in time (optional).
Output: r: Role assignment vector.

m̂: Discovered number of roles present in
the multi-agent system.

1: Construct unified representations A(t) at each time
point through Eq. (4) (if Z(t) is available) or Eq. (3)
(if Z(t) is not available).

2: Learn the optimal unified temporal representation A
to incorporate representations of each time step
through Eq. (5).

3: Update A according to Eq. (6).
4: Initialize ρ such that 1 < ρ < 2, µ1 such that µ1 > 0,

and µ2 such that µ2 > 0.
5: Learn the optimal shared role indicator matrix U by

minimizing Eq. (7), through the solution described
in Section III-D.1.

6: Factor U to learn the optimal role probability matrix
W by minimizing Eq. (8), through the solution
described in Section III-D.2.

7: Discover each agent’s role assignment by defining
the vector r from the values in W through Eq. (9).

8: Discover the number of roles present in the system
m̂ through Eq. (10).

9: return r, m̂.

In order to avoid this, we modify our unified representation
A such that each agent is as similar to itself as its most
dissimilar relationship:

aii = argmax
j, s.t.j 6=i

aij (6)

We now identify shared roles by finding a minimum selec-
tion of agent relationships. We define a shared role indicator
matrix U ∈ Rn×n, where uij represents the probability that
the i-th agent and the j-th agent share a role. We enforce
these values to be probabilities by constraining this matrix to
be non-negative, with each row and column summing to 1.
Further, we also enforce this matrix to be symmetric, so the
uij = uji, meaning that the probability that agent i shares
a role with agent j is equal to the probability that agent j
shares a role with agent i. We formulate this as a constrained
minimization problem:

min
U
‖U�A‖1 (7)

s.t. U ≥ 0,U = U>,U1n = 1n.

Here, U�A represents the Hadamard product of U and A,
or element-wise multiplication, where (U � A)ij = uijaij .
‖ · ‖1 represents the `1-norm of a matrix, or the sum of the
absolute values of all elements.

In order to discover the number of roles present in the
system, we then factor this shared role indicator matrix into

two n ×m matrices, where m = n − 1. We introduce role
probability matrices W ∈ Rn×m and V> ∈ Rn×m. While
we loosely enforce that W = V>, we further constrain only
W, with each row this matrix representing the probability
that an agent belongs to each of m possible roles. While
this may seem like a repetition of the values indicated in U,
this will allow the discovery of the actual number of roles
present. We learn W and V through a matrix factorization-
based approach by approximating the shared role indicator
matrix U:

min
W,V

‖WV −U‖2F + β‖W −V>‖2F (8)

s.t. W ≥ 0,W1m = 1n.

Here, β controls the importance of ensuring this factorization
is symmetric, i.e., that W = V>. Through the constraints
that W ≥ 0 and W1m = 1n, we ensure each row in W
again represents a probability by constraining values to be
non-negative and requiring rows to sum to 1.

After learning the optimal value of W, we are now able to
discover each agent’s role assignment and the actual number
of roles present in the multi-agent system. We define the final
role assignment vector r ∈ Rn, where ri indicates the role
that the i-th agent is assigned to. We do this by identifying
the role with the maximum probability in each agent’s row
in W:

r = [ri] = j, such that argmax
j

wij (9)

The final discovered number of roles present in the multi-
agent system is denoted as m̂, which is defined by:

m̂ = unique(r) (10)

where unique(·) is a function returning the number of unique
elements in a vector.

D. Solution Algorithm

In this section, we present iterative algorithms to solve
for the optimal U in Eq. (7) and W in Eq. (8). We then
prove that both algorithms converge to the optimal solution
for each formulation.

1) Solution for Eq. (7): In this section, we describe a
solution to solve for the optimal shared role indicator matrix
U. To do so, we introduce a new constraint U = Û. We
present the solution for U, as the solution for Û is similar
but less complex and thus omitted for brevity.

Step 1.1: We first incorporate U = Û and constraints
from Eq. (7) into the objective function as penalty terms,
introducing parameters µ1, Λ1, Λ2, and λ1:

min
U,Û

‖U�A‖1 +
µ1

2
‖Û−U +

1

µ1
Λ1‖2F + (11)

µ1

2
‖U1n − 1n +

1

µ1
λ1‖22 +

µ1

2
‖U> − Û +

1

µ1
Λ2‖2F

s.t. U ≥ 0.



Step 1.2: Next, we rewrite the Hadamard product term in
Eq. (7) as a trace of a matrix product:

‖U�A‖1 −→ trace(U>A) (12)

Step 1.3: We now take the derivative of the updated Eq.
(11) w.r.t. U, and set this equal to 0:

0 =A+ 2µ1U + µ1U1n1
>
n − µ1Û− µ1Û

>−
− µ11n1

>
n + λ11

>
n − Λ1 + Λ>2 (13)

U =
(
µ1(Û + Û> + 1n1

>
n )− λ11>n + Λ1 − Λ>2 −A

)(
2µ1I + µ11n1

>
n

)−1
(14)

Step 1.4: We know enforce the constraint that U contain
only non-negative terms:

U = max(U, 0) (15)

Step 1.5: We lastly update the penalty parameters µ, λ1,
and Λ:

λ1 = λ1 + µ1(U1n − 1n) (16)

Λ1 = Λ1 + µ1(Û−U) (17)

Λ2 = Λ2 + µ1(U> − Û) (18)
µ1 = ρµ1 (19)

where ρ is chosen such that 1 < ρ < 2.
Step 1.6: We then repeat Steps 1.3 to 1.5 until convergence

to find the optimal solution U for Eq. (7), while performing
similar steps by utilizing the derivative of Eq. (11) w.r.t. Û.

2) Solution for Eq. (8): In this section, we describe a
solution to solve for the optimal role probability matrix W.
We present only the solution algorithm for W, as the solution
for V is omitted for brevity due to its similarity.

Step 2.1: We again incorporate constraints in Eq. (8) into
the objective function as penalty terms:

min
W,V

‖WV −U‖2F + β‖W −V>‖2F + (20)

µ2

2
‖W1m − 1n +

1

µ2
λ2‖22

s.t. W ≥ 0.

Step 2.2: We now take the derivative of Eq. (20) w.r.t. W,
set this equal to 0, and solve for the update to W:

0 = 2WVV> − 2UV> + 2βW − 2βV>+ (21)

+ µ2W1m1>m − µ21n1
>
m + λ21

>
m

W = (2UV> + 2βV> + µ21n1
>
m − λ21>m) ∗ (22)

(2VV> + 2βIm + µ21m1>m)−1

Step 2.3: We update V similarly to Step 2.2, by taking
the derivative of Eq. (11) w.r.t. V, setting it equal to 0, and
solving for the update.

Step 2.4: We enforce the constraint that all values in W
be non-negative:

W = max(W, 0) (23)

Step 2.5: Finally, we update penalty parameters µ and λ2:

λ2 = λ2 + µ2(W1m − 1n) (24)
µ2 = ρµ2 (25)

Step 2.6: To solve for W that minimize Eq. (8), we repeat
Steps 2.2 to 2.5 until convergence, while also updating V at
each iteration.

3) Convergence of Solutions: : We now prove that both
the solutions presented in Section III-D.1 and Section III-D.2
both converge to the respective optimal solutions.

Lemma 1: Constrained optimization problems of the form

min f(X) s.t. h(X) = 0 (26)

are able to be transformed into regularized optimization
problems through the addition of penalty terms:

min f(X) +
µ

2
‖h(X) +

1

µ
Λ‖2F (27)

Problems transformed as such via the general Augmented
Lagrangian Method (ALM) [35] reduce the objective value
of the function iteratively subject to the constraint that 0 <
µk < µk+1 is satisfied at each iteration k.

Theorem 1: Eq. (7) and Eq. (8) both converge to the
respective optimal solutions U and W.

Proof: As these solution algorithms are similar, we
will discuss only the convergence of the solution for Eq.
(7). Eq. (8) converges for the same conditions as Eq. (7).
We first note that the solution for Eq. (7) follows the ALM
transformation from the form in Eq. (26) to the form in Eq.
(27), where the constraints U = U> and U1n = 1n are
converted to regularization terms (e.g., h1(U) = U1n−1n).
Thus, the constraints in our formulation are converted into
penalty terms.

Next, we note that µ1 is initialized such that µk
1 > 0 for

k = 0, where k is the iteration. Therefore, at k = 0, Lemma
1 holds.

We now consider two possibilities for the value of µk+1
1 .

First, we consider if µk+1
1 < µk

1 . For this to be the case, then
µk+1
1 /µk

1 < 1. As we know from rearrangement of Eq. (19),
µk+1
1 /µk

1 = ρ. As ρ is defined such that 1 < ρ < 2 in Line
4 of Algorithm 1, this case cannot occur.

Next, we consider the case where µk+1
1 = µk

1 for some
iteration k. For this case to occur, µk+1

1 /µk
1 = 1 = ρ. As ρ

is defined such that ρ > 1 in Line 4 of Algorithm 1, this
case can also not occur.

As the case that µk+1
1 = µk

1 cannot occur and the case
that µk+1

1 < µk
1 cannot occur, then the case must be that

µk+1
1 > µk

1 . Given this, for any iteration k Lemma 1 holds
and the solution described for Eq. (7) converges to the
optimal solution.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate our proposed approach on two datasets.



(a) UCLA Aerial Video

(b) Swarm Red Team

Fig. 2. Example data instances from each dataset. Figure 2(a) shows a
frame from the UCLA Aerial Video dataset. The dataset provides annota-
tions for each individual’s position and role within the scene. Figure 2(b)
shows a sample trajectory from our introduced Swarm Red Team dataset,
consisting of two hubs deploying four auxiliaries. This dataset provides
position data and communication history for each agent at each time step.

• UCLA Aerial Video (UCLA) [5]: This dataset1 consists
of drone recordings of interaction among groups of mul-
tiple humans, with 12 different events and 18 different
roles. An example event would be Group Tour, with
roles in this scene being Guide and Tourist. For this
dataset, x ∈ R2 corresponds to the human’s location in
the image and z describes the visual attributes of the
human.

• Swarm Red Team (SRT): We introduce this dataset
for the purpose of identifying roles in an unknown,
observed multi-robot swarm. This simulated dataset
consists of ballistic-like trajectory data for multiple
robots as they move, with some robots acting as hubs
and others as auxiliaries. The dataset includes 100
instances each for 5 different combinations of hubs and
auxiliaries. For this dataset, x ∈ R3 corresponds to the
robot’s position in space, with latitude, longitude, and
altitude recorded in meters. z describes the communica-
tion behavior of the robot. This communication history
follows a TDMA protocol, where agents performing
different roles broadcast different message content. z(t)i

would be a binary vector describing this history up to
time t, where zij ∈ {0, 1} indicates whether or not the
i-th agent was broadcasting at the j-th point in time.
We have made this dataset publicly available2.

1Available at http://www.stat.ucla.edu/˜tianmin.shu/
AerialVideo/AerialVideo.html.

2Available at http://brianreily.com/links/role_
discovery_dataset.

We compare to several other methods, including role
recognition methods and clustering approaches, as well an
alternate version of our proposed approach.

• Multimodal Graph Embedding (MMGE) [12]: We first
evaluate against MMGE, a team discovery approach
for multi-robot systems. This method embeds multiple
graphs describing a single multi-robot system into a
unified vector representation for each robot, which can
then be clustered into teams. We consider the discovered
teams as equivalent to assigned roles for the purposes of
evaluation. As this method is capable of incorporating
multiple graphs, we use the unified representations A(t)

at each time step as the input graphs. This approach is
unable to discover the number of roles, so m is set to
the ground truth number of roles for each data instance.

• Structural Clustering Algorithm for Networks (SCAN)
[32]: We next evaluate against SCAN, a structural role
clustering approach for graphs. The SCAN method
partitions a graph using a structural similarity measure,
identifying clusters, hubs, and outliers. We consider
hubs, outliers, and each identified cluster as equivalent
to various assigned roles. As SCAN is not designed for
a fully connected graph such as our unified temporal
representation A, we set below-average weight edges
to 0: aij = 0 if aij < Ā.

• DBSCAN [36]: We then evaluate against a state-of-the-
art clustering approach in DBSCAN, which we use to
cluster A into roles, while also discovering the number
of clusters/roles present.

• KMeans [37]: We also evaluate against the KMeans
approach, a standard clustering algorithm. As with
DBSCAN, the input given is the unified temporal rep-
resentation A. This approach also is unable to discover
the number of roles, so m is set to the ground truth
number of roles for each data instance.

• Our Approach: Finally, we evaluate the performance of
our proposed approach. We also evaluate an alternate
version with a known value of m, in order to compare
more directly to approaches like MMGE or KMeans
which cannot identify m̂ by themselves.

We evaluate the performance of each method based on the
following metrics:

• Role Assignment: As a quantitative metric to determine
the accuracy of the role assignments in r, we utilize
the Adjusted Rand Index [38]. The typical Rand Index
quantifies the similarity between two labelings, where a
score of 1 indicates the assignments completely match
and 0 indicating they do not agree on any element.
The Adjusted Rand Index includes an additional factor
to adjust for the possibility of chance in the assigned
labels, and so values are not restricted to the range of
the original method. Higher values indicate a labeling
that is closer to ground truth.

• Error in Discovered m̂: Each instance in both datasets
has a ground truth number of roles m̃. As our approach
is able to identify the number of roles m̂ in a multi-agent

http://www.stat.ucla.edu/~tianmin.shu/AerialVideo/AerialVideo.html
http://www.stat.ucla.edu/~tianmin.shu/AerialVideo/AerialVideo.html
http://brianreily.com/links/role_discovery_dataset
http://brianreily.com/links/role_discovery_dataset
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Fig. 3. Overall metrics for compared approaches on the UCLA Aerial
Video dataset. Higher Adjusted Rand Index scores indicate role assignments
closer to the ground truth. Lower values for m̂ error indicate more accurate
identification of the number of roles in a multi-agent system. Markers show
mean results, with 1 standard deviation above and below indicated with a
bar.

system, we evaluate the error between the identified
number of roles versus the ground truth number. For this
metric, we use only the approaches which are able to
identify a number of labels by themselves (our proposed
approach, SCAN, and DBSCAN). We define this metric
as abs(m̃− m̂).

For both metrics, we report the mean of each approach’s
performance, as well as 1 standard deviation above and
below.

B. Results on UCLA Aerial Video

We first evaluate our approach and the comparison ap-
proaches on the UCLA Aerial Video dataset. For this dataset,
we used events which had more than 1 role being played.
As the number of events is large and the number of data
instances for each event type is small, we report combined
results across the entire dataset, shown in Figure 3.

First, we compare the Adjusted Rand Index scores for
all evaluated approaches in Figure 3(a). We can observe
that our proposed approach, both with and without a known
number of roles m, is able to best discover roles for the
individuals in each scene. The version of our approach that
must also identify a number of roles m̂ actually outperforms
the version where m is known a priori, suggesting that not
restricting the matrix factorization portion of our approach
to specific dimensions allows it to more accurately recover
connections between agents. Of the compared approaches,
SCAN performs the best, providing somewhat informative
role assignments. The other compared approaches result in
scores near 0, indicating that team discovery and clustering
does not translate well to the problem of role discovery.

Next, we compare the ability of our approach, SCAN, and
DBSCAN to discover the number of roles in a multi-agent
system, seen in Figure 3(b). Here, our proposed approach
again performs the best, showing with an error value below
1 that it is able to very accurately map relationships among
agents to the number of roles present in the multi-agent
system. SCAN again performs the best of the compared
approaches. DBSCAN performs the worst, while also being
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Fig. 4. Results of compared approaches on the problem of role assignment
for the Swarm Red Team dataset, scored by the Adjusted Rand Index. Higher
scores indicate role assignments closer to the ground truth labelings. Markers
show mean results, with 1 standard deviation above and below indicated with
a bar.

the most inconsistent with a very high standard deviation in
its predicted m̂.

C. Results on Swarm Red Team

We next evaluate on the Swarm Red Team dataset, which
consists of 5 different scenarios with varying numbers of
hubs and auxiliaries. These are specified as:
• Scenario 1: 2 hub agents and 2 auxiliary agents.
• Scenario 2: 2 hubs and 4 auxiliaries.
• Scenario 3: 3 hubs and 2 auxiliaries.
• Scenario 4: 3 hubs and 3 auxiliaries.
• Scenario 5: 4 hubs and 4 auxiliaries.

These scenarios allow evaluation across a range of multi-
agent system sizes and a range of hub-to-auxiliary ratios.
Evaluation is done on a portion of the agents’ trajectories.

We first report quantitative results on the problem of
discovering role assignments, with Adjusted Rand Index
scores shown in Figure 4 and broken down by scenario. We
can see that there exists significant performance variation
across all scenarios. Our approach, both with and without a
known m, performs consistently well. There is little variation
between the performance of our approach with a set m and
without, with both forms performing similarly on Scenarios
2, 3, and 5 and splitting Scenarios 1 and 4. This indicates that
our described approach is a capable role assignment method
no matter the amount of prior information known about the
multi-agent system. In all cases, our approaches generate
the best results, often exceeding 1 standard deviation above
the mean performance of other approaches. We also observe
that the existing team and vertex role discovery approaches
MMGE and SCAN only provide useful role assignments
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for Scenario 1, the smallest scenario. As the number of
agents increases, their performance consistently scores an
Adjusted Rand Index of 0, indicating that their original
related purposes (multi-robot team identification for MMGE
and graph vertex role assignment for SCAN) do not translate
well to multi-agent role assignment. While the existing
clustering approaches DBSCAN and KMeans do outperform
those methods, they significantly underperform compared to
our proposed role discovery method.

These observations extend to the performance of these
approaches across the entire dataset, as reported in Figure
6(a). Overall, our proposed approach performs well, even
when it must also discover the number of roles present.
The compared approaches all perform similarly overall to
their specific performance on individual scenarios, with poor
results near an Adjusted Rand Index of 0.

We next report quantitative results on the error in the
discovered m̂ in Figure 5, again broken down by scenario.
For these results, we compared only methods which are able
to identify a number of labels without it being known a
priori: SCAN, DBSCAN, and our proposed approach. For
this dataset, the ground truth number of roles was m̃ = 2 for
all scenarios. We can see that SCAN consistently achieves
an error of 1, with a standard deviation of 0. Due to how
SCAN analyzes the structure of the input graph (the unified
temporal representation A), it always discovers 3 roles in this
dataset. This can be interpreted not as an actual reflection of
the data but a limitation of the SCAN algorithm. We can
see that DBSCAN has an error near 1 for most scenarios,
showing that its ability to discover clusters does translate
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Fig. 6. Overall metrics for compared approaches on the Swarm Red Team
dataset. Markers show mean results, with 1 standard deviation above and
below indicated with a bar.

well to discovering the number of roles. However, there can
be significant variation in its performance, particularly in
the larger multi-agent systems in Scenarios 2 and 5. This
indicates it could not be relied on to consistently discover the
number of roles in a system. Our approach performs the best
in all scenarios except Scenario 5, while even then averaging
an error of less than 1.5. In all other scenarios the error of
our approach is less than 1, showing that our approach is
able to consistently identify close to the correct number of
roles. We can see that our approach’s superior performance
holds when considering the dataset overall, as seen in Figure
6(b). Our approach is able to achieve the lowest error, while
SCAN still outperforms the DBSCAN approach due to its
consistent discovery of 3 roles.

When considered together, Figures 6(a) and 6(b) show that
our approach outperforms existing methods in role discovery,
both by learning accurate role assignments in a multi-agent
system and able by more accurately discovering the number
of roles within a multi-agent system.

V. CONCLUSION

Multi-agent systems are ubiquitous in the real world, and
a constant variable for autonomous systems to analyze and
interact with. A key capability for autonomous systems is the
capability to understand multi-agent systems, and an impor-
tant part of this is recognizing the roles that agents play. We
present a novel role discovery method, based on observations
of a multi-agent system over time. We present an approach to
first learn a unified temporal representation of a multi-agent
system across multiple time steps based on observations of
the positions and attributes of each agent. Our approach then
learns a shared role indicator matrix that minimizes the cost
of association among agents, and then factors this matrix
into a role probability matrix that represents the probability
of each agent playing each role. From this, our approach
discovers the optimal role assignment for each agent and
discovers the number of roles present in the multi-agent
system. Through extensive experimental evaluation on an
existing dataset, as well as the introduction of a novel role
recognition dataset, we show that our approach outperforms
existing role recognition and clustering methods.
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